文章目录
前言
主成分分析是一种通过降维技术把多个标量转化为少数几个主成分的多元统计方法,这些主成分能够反映原始的大部分信息,通常被表示为原始变量的线性组合。为了使这些主成分所包含的信息互不重叠,要求各主成分之间互不相关。
主成分分析能够有效减少数据的维度,并使提取的成分与原始数据的误差达到均方最小,可用于数据的压缩和模式识别的特征提取。本章通过采用主成分分析去除了图像数据的相关性,将图像信息浓缩到几个主成分的特征图像中,有效地实现了图像的压缩,同时可以根据主成分的内容恢复不同的数据图像,以满足对图像压缩、重建的不同层次的需要。
一、理论基础
1.主成分降维分析原理
主成分分析在很多领域都有着广泛的应用,一般而言,当研究的问题涉及很多变量,并且变量间相关性明显,即包含的信息有所重叠时,可以考虑用主成分分析的方法,这样更容易抓住事物的主要矛盾,使问题得到简化。

本文介绍了基于主成分分析(PCA)的图像压缩方法。通过PCA进行数据降维,达到图像压缩的效果,同时讨论了如何从得分矩阵重建样本以及如何计算数据压缩比。程序实现部分包括PCA的源代码,图像数组与样本矩阵之间的转换,以及PCA图像压缩的实现。
订阅专栏 解锁全文
2382

被折叠的 条评论
为什么被折叠?



