前言
在日常学习和生活中,人眼是人们接收信息最常用的通道之一。据统计,人们日常处理的信息有 75%~85%属于视觉信息范畴,文字信息则占据着重要的位置,几乎涵盖了人类生活的方方面面。如对各种报纸期刊的阅读、查找、批注;对各种文档报表的填写、修订;对各种快递文件的分拣、传送、签收等。因此,为了实现文字信息解析过程的智能化、自动化,就需要借助计算机图像处理来对这些文字信息进行识别。
早在 20 世纪 50 年代初期,欧美就开始对文字识别技术进行研究。特别是 1955 年印刷体数字OCR 产品的出现,推动了英文和数字识别技术的发展。美国 IBM 公司的 Casey 和 Nagy 最早开始了对汉字识别的研究,并于 1966 年发表了第一篇关于汉字识别的论文,采用模板匹配法识别 1000
个印刷体汉字,从此在世界范围内拉开了汉字识别研究的序幕。日本于 20 世纪 70 年代中期开始进行手写体汉字识别的研究,我国于 20 世纪 80 年代初期开始进行手写体汉字识别的研究。
本案例重点研究印刷体图像的灰度转换、中值滤波、二值化处理、形态学滤波、图像与字符分割等算法,形成一套效果明显、简便易行的印刷体字符图像识别算法。在印刷体字符
的识别过程中,采用字符的归一化和细化处理方法,通过二值化和字体类型特征相结合的处理方式完成特征提取,并建立字符标准特征库&#
本文探讨了基于特征匹配的英文印刷字符识别技术,包括图像预处理(灰度化、中值滤波、二值化和形态学滤波)和图像识别技术(统计特征、结构特征和机器学习)。实验通过MATLAB实现,展示了识别算法在英文字符图像的高效性和准确性,为后续汉字等复杂字符图像识别的研究提供了基础。
订阅专栏 解锁全文
608

被折叠的 条评论
为什么被折叠?



