文章目录
前言
主要对物体进行识别,搭建一个物体分类系统
一、CIFAR-10 数据集
CIFAR-10 数据集是由著名学者 Hinton 的学生 Alex Krizhevsky、Ilya Sutskever 收集整理并公开的一个数据集,相比其他数据集 CIFAR-10 规模较小且更接近普适物体,被广泛应用于自然场景下的目标检测和分类应用。CIFAR-10 数据集包含 10 个类别的 RGB 彩色图片,每个图片
的大小都为 32×32,每个类别有 5000 张用于训练、1000 张用于测试。其中,这 10 个类别的列表如表 31-1 所示。

本次实验针对 CIFAR-10 数据集,选择 VggNet、ResNet 网络进行修改及迁移学习,得到了分类器并验证了其识别效果。
二、VggNet
VggNet 是经典的深度 CNN
本文介绍了一种基于MATLAB的物体识别系统,利用CIFAR-10数据集,探讨了VggNet和ResNet的网络编辑与导出,以及在GUI界面下的网络训练、测试和互联网图片识别过程。
订阅专栏 解锁全文
3448

被折叠的 条评论
为什么被折叠?



