基于matlab的CNN物体识别物体分类系统

42 篇文章 69 订阅 ¥49.90 ¥99.00
本文介绍了一种基于MATLAB的物体识别系统,利用CIFAR-10数据集,探讨了VggNet和ResNet的网络编辑与导出,以及在GUI界面下的网络训练、测试和互联网图片识别过程。
摘要由CSDN通过智能技术生成


前言

主要对物体进行识别,搭建一个物体分类系统


一、CIFAR-10 数据集

CIFAR-10 数据集是由著名学者 Hinton 的学生 Alex Krizhevsky、Ilya Sutskever 收集整理并公开的一个数据集,相比其他数据集 CIFAR-10 规模较小且更接近普适物体,被广泛应用于自然场景下的目标检测和分类应用。CIFAR-10 数据集包含 10 个类别的 RGB 彩色图片,每个图片
的大小都为 32×32,每个类别有 5000 张用于训练、1000 张用于测试。其中,这 10 个类别的列表如表 31-1 所示。在这里插入图片描述
在这里插入图片描述
本次实验针对 CIFAR-10 数据集,选择 VggNet、ResNet 网络进行修改及迁移学习,得到了分类器并验证了其识别效果。

二、VggNet

VggNet 是经典的深度 CNN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值