
文章目录
- 前言
- 🎓一、YOLOv9原始版本代码下载
-
- 🍀🍀1.yolov9模型结构图
- 🍀🍀2.环境配置
- 🎓二、MHSA代码
- 🎓三、添加方法
-
- 🍀🍀1.在modules目录下添加第二章的代码
- 🍀🍀2.在__init__.py文件进行导入
- 🍀🍀3.在yolo.py文件进行注册
- 🎓四、yaml文件修改
-
- 🍀🍀1.第一种添加方法
- 🍀🍀2.第二种添加方法
- 🎓五、训练文件修改
- 总结
前言
BoTNet,这是一种概念上简单但功能强大的骨干架构,它结合了MHSA意力机制,适用于图像分类、目标检测和实例分割等多种计算机视觉任务。仅通过在ResNet的最后三个瓶颈块中将空间卷积替换为MHSA注意力,不做其他任何更改,我们的方法在实例分割和目标检测上显著优于基准,同时减少了参数,延迟开销最小。
理论详解可以参考链接:论文地址
代码可在这个链接找到:代码地址
本文在YOLOv9中引入MHSA注意力机制(多头注意力机制)并与RepNCSPELAN4结构融合,代码已经整理好了,跟着文章复制粘贴,即可直接运行
订阅专栏 解锁全文
152

被折叠的 条评论
为什么被折叠?



