
改进前的结果:

改进后的的结果

在添加AKConv能够平均map明显有效涨点,数据集不同有不同的效果,可自行更换位置多多实验
文章目录
- 前言
- 🎓一、YOLOv9原始版本代码下载
-
- 🍀🍀1.yolov9模型结构图
- 🍀🍀2.环境配置
- 🎓二、AKConv代码
- 🎓三、在YOLOv9添加AKConv代码
-
- 🍀🍀1.在modules目录下添加上述的AKConv代码
- 🍀🍀2.在__init__.py文件导入AKConv模块,
- 🍀🍀3.在yolo.py文件导入改进的模块
- 🎓四、yaml文件修改
-
- 🍀🍀1.在头部添加
- 🎓五、训练文件修改
- 总结
前言
基于卷积操作的神经网络在深度学习领域取得了显著成果,但标准卷积操作存在两个固有缺陷。一方面,卷积操作局限于局部窗口,无法捕捉其他位置的信息,其采样形状固定。另一方面,卷积核大小固定为 k × k,形状为固定的正方形,参数数量随大小呈平方增长。显然,不同数据集和位置的目标形状和大小各异。具有固定采样形状和正方形的卷积核无法很好地适应变化的目标。针对以上问题,本文探讨了可变核卷积(AKConv),赋予卷积核任意数量的参数和任意的采样形状,
订阅专栏 解锁全文
264

被折叠的 条评论
为什么被折叠?



