YOLOv9改进,YOLOv9添加DCNv2(可变性卷积),实现高效涨点

47 篇文章 6 订阅 ¥199.90 ¥299.90

在这里插入图片描述
改进前的结果:
在这里插入图片描述
改进后的结果,有效涨点,map50这个值涨了2.1%左右
在这里插入图片描述


前言

DCNv2对原始的DCNv1进行了改进,可变形卷积网络的卓越性能源于其适应对象几何变化的能力。通过对其自适应行为的检查,虽然对其神经特征的空间支持比常规的ConvNets更接近于对象结构,但这种支持可能远远超出感兴趣区域,导致特征受到不相关图像内容的影响。为了解决这个问题,我们提出了一种可变形卷积网的重新表述,通过提高建模能力和更强的训练,提高了其专注于相关图像区域的能力。通过更全面地集成网络中的可变形卷积,并引入扩展变形建模范围的调制机制,增强了建模能力。论文地址&

YOLOv8是一种目标检测模型,它在卷积层中使用了可变形卷积(Deformable Convolution,简称DCN)。可变形卷积是一种可以自适应调整卷积核形状的卷积操作,它能够更好地适应不同尺度和形状的目标。 传统的矩形卷积在特征图的特定位置进行特征学习和下采样,但在同一特征层的不同位置对应的是不同尺度和形状的目标,这导致了目标检测的一定局限性。可变形卷积则通过引入不规则的卷积核,提供了更大的灵活性和自适应性。它可以根据对象的比例和形状自动调整卷积核,从而更好地捕捉目标的特征。 对于YOLOv8,它使用了可变形卷积来扩大特征图的感受野,并提高模型对物体变形的模拟能力。通过引入可变形卷积YOLOv8能够更好地提取特征并提高模型的识别能力,尤其在对小目标的检测效果方面表现较好。 需要注意的是,YOLOv8中的卷积层通常使用conv2D卷积、BN归一化和Silu激活函数。通过将卷积层的卷积改为可变形卷积YOLOv8能够更好地处理目标检测任务。可变形卷积的引入使得YOLOv8在目标检测中具有更强的性能和适应性。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [【YOLOv8/YOLOv7/YOLOv5/YOLOv4/Faster-rcnn系列算法改进NO.57】引入可形变卷积](https://blog.csdn.net/m0_70388905/article/details/129401640)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [Keras-YOLOv4:yolov4 42.0%mAP.ppyolo 45.1%mAP](https://download.csdn.net/download/weixin_42118423/15917963)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [YOLOv8添加DCNv3可变形卷积](https://blog.csdn.net/weixin_70423469/article/details/131702564)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值