改进前的结果: 改进后的结果,有效涨点,map50这个值涨了2.1%左右 文章目录 前言 🎓一、YOLOv9原始版本代码下载 🍀🍀1.yolov9模型结构图 🍀🍀2.环境配置 🎓二、DCNv2代码 🎓三、在YOLOv9添加DCNv2代码 🍀🍀1.在modules目录下添加第二章的DCNv2代码 🍀🍀2.在__init__.py文件导入DCNv2模块, 🍀🍀3.在yolo.py文件导入改进的模块 🎓四、yaml文件修改 🍀🍀1.在主干网络替换 🎓五、训练文件修改 总结 前言 DCNv2对原始的DCNv1进行了改进,可变形卷积网络的卓越性能源于其适应对象几何变化的能力。通过对其自适应行为的检查,虽然对其神经特征的空间支持比常规的ConvNets更接近于对象结构,但这种支持可能远远超出感兴趣区域,导致特征受到不相关图像内容的影响。为了解决这个问题,我们提出了一种可变形卷积网的重新表述,通过提高建模能力和更强的训练,提高了其专注于相关图像区域的能力。通过更全面地集成网络中的可变形卷积,并引入扩展变形建模范围的调制机制,增强了建模能力。论文地址&