改进前: 改进后的结果,有效涨点,map50这个值涨了 前言 带有大内核注意力模块的视觉注意力网络,在一系列基于视觉的任务中,其性能明显优于视觉变换器。然而,这些 LKA 模块中的深度卷积层但是,这些 LKA 模块中的深度卷积层在计算和内存占用方面会产生四次方随着卷积核大小的增大卷积核的大小。为了缓解这些问题,并为了缓解这些问题,并在 VAN 的注意力模块中使用超大卷积核为了缓解这些问题,并在 VAN 的注意力模块中使用超大卷积核,我们提出了一系列大分离核注意力模块(Large Separa-内核注意模块,称为 LSKA。LSKA深度卷积层的二维卷积核为层叠的水平和垂直