YOLOv9改进,YOLOv9添加ParNetAttention注意力机制,助力涨点

47 篇文章 6 订阅 ¥199.90 ¥299.90

在这里插入图片描述

前言

全深度是深度神经网络的标志。但更多的深度意味着更多的顺序计算和更高的延迟。ParNetAttention使用并行子网络而不是一层层叠加。这有助于在保持高性能的同时有效减少深度。

ParNetAttention理论详解可以参考链接:论文地址
ParNetAttention代码可在这个链接找到:代码地址

本文在YOLOv9中引入GAM(全维度动态卷积),实现了大幅度涨点,代码已经整理好了,跟着文章复制粘贴,即可直接运行
改进前的结果:
在这里插入图片描述

改进后的结果,从各项评价指标看出高效涨点
在这里插入图片描述

Yolov8EMA注意力机制是指在Yolov8目标检测算法中使用EMA(Exponential Moving Average)注意力机制来提升性能的一种改进方法。该方法是基于EMA注意力机制的论文翻译而来,并将EMA应用于Yolov8中。通过在自己的数据集上测试,该方法取得了一些性能提升。与其他注意力方法通过简单平均方法聚合学习到的注意力权重不同,Yolov8EMA注意力机制采用了跨空间学习方法,通过融合并行子网络的注意力图来突出所有像素的全局上下文。这种多尺度的注意力机制在性能提升方面表现出更好的效果。因此,Yolov8EMA注意力机制是一种高效的多尺度注意力机制,可以用于改进目标检测算法。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [YoloV8改进策略:新出炉的EMA注意力机制助力YoloV8更加强大](https://blog.csdn.net/m0_47867638/article/details/131356975)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [YOLOV8改进:CVPR 2023 | 在C2f模块不同位置添加EMA注意力机制,有效涨点](https://blog.csdn.net/m0_51530640/article/details/131412297)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值