YOLOv8改进 | 融合篇,YOLOv8主干改进融合网络之MobileNetV3+CA注意机制,助力涨点

65 篇文章 33 订阅 ¥199.90 ¥299.90

在这里插入图片描述

改进1(MobileNetV3轻量化架构改进特征提取网络):

原论文摘要

MobileNetV3通过结合硬件感知网络架构搜索(NAS)和NetAdapt算法,通过新颖的架构改进进一步提升了性能。本文开始探讨了自动化搜索算法与网络设计如何协同工作,以利用互补方法来提升整体技术水平。通过这一过程,创建了两个新的MobileNet模型:MobileNetV3-Large和MobileNetV3-Small,分别针对高资源和低资源使用场景。这些模型随后被适配并应用于目标检测和语义分割任务。对于语义分割(或任何密集像素预测)任务,提出了一种新的高效分割解码器——Lite Reduced Atrous Spatial Pyramid Pooling(LR-ASPP)。我们在移动端的分类、检测和分割任务中取得了新的最先进的成果。相比于MobileNetV2,MobileNetV3-Large在ImageNet分类上精度提高了3.2%,同时延迟减少了15%;MobileNetV3-Small的精度提高了4.6%,而延迟减少了5%。在COCO检测任务中,MobileNetV3-Large的检测速度比MobileNetV2快25%,而精度几乎相同。对于Cityscapes分割任务,MobileNetV3-Large LR-ASPP比MobileNetV2 R-ASPP快30%,且精度相近。

MobileNetV3理论详解可以参考链接:论文地址
MobileNetV3代码可在这个链接找到:代码地址


改进2(引入CA注意机制):

原论文摘要

在本文中,提出了一种新的移动网络注意力机制,将位置信息嵌入到信道注意力中称之为“协调注意力”。与渠道关注不同通过2D全局池将特征张量转换为单个特征向量,坐标注意力因子将通道注意力转化为两个1D特征编码过程,这两个过程分别沿着两个空间方向聚合特征。通过这种方式,可以沿着一个空间方向捕获长程依赖性和均值,同时可以沿着另一个空间方向。生成的特征图为然后分别编码为一对方向感知和位置敏感注意力图࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值