YOLOv8改进,YOLOv8添加NAM注意力机制,融合C2f结构

65 篇文章 33 订阅 ¥199.90 ¥299.90

在这里插入图片描述

原论文摘要

一种新的基于归一化的注意力模块(NAM),该模块可以抑制不太显著的权重。它对注意力模块应用权重稀疏性惩罚,从而使它们在保持类似性能的同时更具计算效率。与在 Resnet 和 Mobilenet 上的其他三种注意力机制的比较表明,我们的方法在准确性方面更高。

NAM介绍

我们提出了NAM作为一种高效且轻量级的注意机制。我们采用了CBAM中的模块整合方法,并重新设计了通道和空间注意子模块。然后,在每个网络块的末端嵌入NAM模块。对于残差网络,它被嵌入到残差结构的末端。
我们还对空间维度应用BN的缩放因子来衡量像素的重要性。我们称之为像素归一化。对应的空间注意子模块如图2。
NAM的优势
1.高效性:通过使用BN的缩放因子,我们能够高效地衡量通道和像素的重要性,而不会显著增加计算复杂度。
2.轻量级:NAM模块结构简单且易于嵌入现有网络架构中。
3.性能提升:通过对显著性较低的权重进行抑制,NAM能够提高模型的性能。
这些特性使得NAM成为一种高效且实用的注意机制,能够在多种计算机视觉任务中实现性能提升。
在这里插入图片描述

NAM理论详解可以参考链接:论文地址
NAM代码可在这个链接找到:代码地址

本文在YOLOv8中引入NAM注意力机制,融合C2f结构代码已经整理好了,跟着文章复制粘贴,即可直接运行


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值