YOLOv8改进,YOLOv8替换主干网络为PP-HGNetV1(百度飞桨视觉团队自研,助力涨点)

123 篇文章 75 订阅 ¥199.90 ¥299.90

在这里插入图片描述

摘要

PP-HGNet(High Performance GPU Net) 是百度飞桨视觉团队自研的更适用于 GPU 平台的高性能骨干网络,该网络在 VOVNet 的基础上使用了可学习的下采样层(LDS Layer),融合了 ResNet_vd、PPHGNet 等模型的优点,该模型在 GPU 平台上与其他 SOTA 模型在相同的速度下有着更高的精度。在同等速度下,该模型高于 ResNet34-D 模型 3.8 个百分点,高于 ResNet50-D 模型 2.4 个百分点,在使用百度自研 SSLD 蒸馏策略后,超越 ResNet50-D 模型 4.7 个百分点。与此同时,在相同精度下,其推理速度也远超主流 VisionTransformer 的推理速度。PP-HGNet 使用 3x3 标准卷积(计算密度最高)较多。在此将 VOVNet 作为基准模型,将主要的有利于 GPU 推理的改进点进行融合。PP-HGNet 骨干网络的整体结构如下:

在这里插入图片描述
其中,PP-HGNet是由多个HG-Block组成,HG-Block的结构如下:
在这里插入图片描述

代码可在这个链接找到:代码地址

本文在YOLOv8中的主干网络替换成PP-HGNetV1,代码已经整理好了,跟着文章复制粘贴,即可直接运行


### 将YOLOv8主干网络替换为MobileNetv3 在目标检测模型中,主干网络的选择对于性能至关重要。为了提高计算效率并保持良好的精度,在YOLOv8框架下采用更轻量级的MobileNetV3作为新的骨干网是一个合理的选择[^1]。 #### 修改配置文件 首先需要调整`yolov8.yaml`中的backbone部分定义来匹配MobileNet v3结构特性: ```yaml # yolov8_custom.yaml nc: 80 # number of classes depth_multiple: 0.33 width_multiple: 0.5 ... backbone: - [Focus, c1=3, c2=16, k=3] - [Conv, c1=16, c2=16, ... ] # Replace with MobileNet V3 layers accordingly. ``` 注意这里仅展示了简化版配置片段;实际操作时应依据官方文档指导完成全部必要参数设置[^2]。 #### 编写自定义Backbone模块 由于预训练权重不兼容问题,建议重新构建适用于YOLO架构下的MobileNetV3类,并确保其输入输出维度与原有设计相吻合。可以参考如下Python代码创建相应组件: ```python import torch.nn as nn from torchvision.models.mobilenet import mobilenet_v3_large class CustomMobilenetV3(nn.Module): def __init__(self, pretrained=True): super(CustomMobilenetV3, self).__init__() base_model = mobilenet_v3_large(pretrained=pretrained) # Remove last few fully connected layers to adapt YOLO structure requirements features = list(base_model.features.children()) self.backbone = nn.Sequential(*features[:-1]) def forward(self, x): return self.backbone(x) if __name__ == "__main__": model = CustomMobilenetV3() print(model) ``` 此脚本实现了基于PyTorch库加载mobilenet_v3_large函数生成的基础版本,并移除了不适合直接用于特征提取的部分层以适应YOLO需求[^3]。 #### 训练过程中的挑战 当更换不同类型的卷积神经网络作为探测器的核心组成部分时可能会面临一些困难: - **迁移学习效果不佳**: 如果新旧两套体系差异较大,则简单复制原模型权值往往难以取得理想成绩; - **超参调优复杂度增加**: 更改基础构件后原有的优化策略未必适用,需投入更多精力探索最佳实践方案; - **硬件资源消耗变化**: 轻量化改进虽然有助于降低功耗提升速度,但也可能导致GPU利用率波动等问题发生[^4]。 通过上述步骤可以在一定程度上实现在YOLOv8基础上引入MobileNetV3的目标,但仍需针对具体应用场景不断测试验证直至满足预期指标为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值