YOLOv9改进,YOLOv9主干网络为FasterNet(全网独发手把手教学,助力涨点)

47 篇文章 6 订阅 ¥199.90 ¥299.90

在这里插入图片描述

摘要

近年来,许多研究致力于减少浮点运算(FLOPs)以加速神经网络。然而,我们观察到这种FLOPs的减少并不一定能带来相应的延迟减少。这主要是由于运算每秒浮点运算数(FLOPS)效率低下,尤其是在频繁的内存访问(如深度卷积)时。为了解决这一问题,提出了一种新的部分卷积(Partial Convolution,PConv),该方法通过减少冗余计算和内存访问来更高效地提取空间特征。基于PConv,我们进一步提出了FasterNet,这是一系列新的神经网络家族,在不牺牲各种视觉任务准确性的前提下,大幅提高了在各类设备上的运行速度。例如,在ImageNet-1k数据集上,FasterNet-T0在GPU、CPU和ARM处理器上的运行速度分别比MobileViT-XXS快2.8倍、3.3倍和2.4倍,同时精度提高了2.9%。FasterNet-L在GPU上的推理吞吐量提高了36%,在CPU上的计算时间减少了37%,达到了与Swin-B相当的83.5%的顶级准确率。

FasterNet 介绍

FasterNet的整体架构由四个分层阶段组成,每个阶段包含一组FasterNet模块,并在前面加一个嵌入或合并层。最后三层用于特征分类。每个FasterNet模块内部,一个PConv层后跟两个PWConv层,为了保持特征多样性并降低延迟,归一化和激活层仅在中间层之后进行,其中,PConv 是一种快速高效的卷积操作,通过仅对部分输入通道应用卷积滤波器,而保持其余通道不变,从而减少了计算量和内存访问。相比于常规卷积,PConv具有更低的浮点运算次数(FLOPs),而相比深度卷积或分组卷积,PConv的每秒浮点运算数(FLOPS)更高。FasterNet架构如下图:
在这里插入图片描述

理论详解可以参考链接:论文地址
代码可在这个链接找到:代码地址

本文在YOLOv9中的主干网络替换成FasterNet,代码已经整理好了,跟着文章复制粘贴,即可直接运行

YOLOv5中更换主干网络Fasternet,需要进行以下步骤: 1. 在ultralytics/models/v8文件夹下新建一个名为yolov8-FasterNet.yaml的文件。 2. 将FasterNet的代码添加到ultralytics/nn/modules.py文件的末尾。 3. 将FasterNet的类名添加到ultralytics/nn/tasks.py中。 4. 修改yolov8-FasterNet.yaml文件,使用PatchEmbed_FasterNet、BasicStage和PatchMerging_FasterNet构建Fasternet主干网络。 5. 修改ultralytics/yolo/cfg/default.yaml文件的'--model'默认参数,或者使用指令直接开始训练。 综上所述,以上是在YOLOv5中更换主干网络Fasternet所需的步骤。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [主干网络篇 | YOLOv8 更换主干网络FasterNet | 《Ran, Don‘t Walk: 追求更高 FLOPS 的快速神经网络》](https://blog.csdn.net/weixin_43694096/article/details/130291796)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [YOLOV5的多主干网络(backbone)实现.zip](https://download.csdn.net/download/cuihao1995/83477139)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值