YOLOv10改进 | 特征融合篇,YOLOv10添加iAFF(多尺度通道注意力模块),二次创新C2f结构,提升小目标检测能力

32 篇文章 6 订阅 ¥159.90 ¥299.90

在这里插入图片描述

摘要

特征融合,即来自不同层或分支的特征的组合,是现代网络架构中无处不在的一部分。虽然它通常通过简单的操作(如求和或拼接)来实现,但这种方式可能并不是最佳选择。在这项工作中,提出了一种统一且通用的方案,即注意力特征融合(Attentional Feature Fusion),适用于大多数常见场景,包括短跳跃连接和长跳跃连接引起的特征融合以及 Inception 层内的特征融合。传统注意力机制往往忽略了不同尺度的特征问题,尤其是当融合特征来自不同尺度的层时。为了更好地融合语义和尺度不一致的特征,提出了一个多尺度通道注意力模块(Multi-Scale Channel Attention Module),通过对通道的多尺度上下文信息进行聚合,能够同时强调全局分布较大的对象以及局部分布较小的对象。通过这种方式,网络能够更好地识别和检测尺度变化较大的对象。总而言之,该模块解决了在不同尺度上给出的特征融合时出现的问题,特征图的初始整合可能成为瓶颈,并且通过增加另一个层次的注意力(称之为迭代注意力特征融合)可以缓解这一问题。iAFF在特征融合方面具有很大的潜力,可以持续产生更好的结果。

理论介绍

AFF和iAFF的示意图如下:

在这里插入图片描述

AFF模块: 通过关注通道的不同尺度(即多尺度通道注意力),解决不同层次特征融合的语义和尺度不一致问题。图(a)中两个输入特征图(X 和 Y)的信息,经过多尺度通道注意力模块(MS-CAM)后,输出特征图Z。具体流程如下:

  • 输入特征 X 和 Y:分别表示不同层或不同尺度的特征图。它们的尺寸都是 C×H×W (C 是通道数,H 和 W 是特征图的高度和宽度)。
  • 加权乘法:首先对 X 和 Y
    进行通道上的加权操作,
注意力特征融合是一种将不同层次或尺度的特征进行融合的方法,以提高模型的性能。在注意力特征融合中,初始特征的融合通常是通过简单的对应元素相加的方式进行的,并且这个融合结果会对最终的融合权重产生影响。然而,作者认为如果想要对输入的特征图有完整的感知,就需要将初始特征融合也采用注意力融合的机制。一种直观的方法是使用另一个注意力模块来融合输入的特征。\[1\] 为了更好地融合语义和尺度不一致的特征,研究者们提出了多尺度通道注意力模块(MS-CAM),该模块解决了融合不同尺度特征时出现的问题。此外,他们还发现初始特征融合可能会成为瓶颈,并提出了迭代注意力特征融合模块iAFF)来缓解这个问题。\[2\] 总结起来,注意力特征融合是一种通过注意力机制将不同层次或尺度的特征进行融合的方法。它可以提高模型对输入特征的感知能力,并解决融合不同尺度特征时可能出现的问题。\[1\]\[2\] #### 引用[.reference_title] - *1* *2* [Attentional Feature Fusion 注意力特征融合](https://blog.csdn.net/L28298129/article/details/126521418)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [图像处理-特征融合相关延伸](https://blog.csdn.net/MengYa_Dream/article/details/124904632)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值