- 博客(206)
- 收藏
- 关注
原创 《MATLAB项目实战》,专栏目录和介绍
MATLAB 是一款强大且广泛应用的数值计算和数据可视化软件工具,它提供了一个高效、简洁的编程环境,使用户能够进行从简单的矩阵运算到复杂的多维数据分析的各种计算任务。无论是在人工智能、计算机视觉、图像处理还是其他领域,MATLAB 都能够提供精准、快速的解决方案,因此成为了全球科研人员、工程师以及数据分析师的得力工具。
2024-09-25 00:30:00
1812
4
原创 《手把手教你YOLOv10实战》,专栏目录和介绍
在计算机视觉领域,目标检测技术一直是研究和应用的热点,而YOLO系列算法凭借其高效性和精确性,成为了广泛应用的选择。YOLOv10作为YOLO系列的最新版本,继承并扩展了前辈的优点,同时也带来了许多创新和改进。本专栏将手把手教你掌握YOLOv10的实战技巧,包括算法改进、环境配置和训练自己数据集等,让你能够迅速上手并应用到实际项目中。
2024-09-14 09:44:00
963
7
原创 《手把手教你YOLOv9实战》,改进专栏目录
为了提供友好的操作效果,本专栏将会手把手搭建可视化界面,我将用PyQt5 搭建一个可视化界面,可视化界面能够实现基本的图像加载与检测功能,如支持视频、摄像头,还支持更换不同的 YOLOv9 模型,并适应不同领域(如口罩检测系统、人脸检测系统、工业缺陷检测系统等),界面灵活、功能强大。通过YOLOv9加以改进设计,形成新的算法框架,一起水科研和论文,专栏会一直持续更新中,本专栏适合目标检测、分割、分类。
2024-08-09 14:48:14
650
1
原创 《手把手教你YOLOv8/YOLOv11/RT-DERT实战》,改进专栏目录和介绍
YOLOv8 是目前比较火和比较成熟的深度学习框架,是2023年1月发布的,由 Ultralytics 团队开发。Ultralytics自YOLOv5 开始一直积极维护和更新 YOLO 框架,因此 YOLOv8 也享有持续的维护与升级支持。因此我写下《手把手教你YOLOv8实战》专栏,专门为那些对计算机视觉、深度学习、以及目标检测技术感兴趣的读者设计。通过本专栏,你将深入理解 YOLOv8 的核心原理与实际应用,从0 开始学习并掌握如何使用 YOLOv8 完成各类目标检测任务,帮助你快速上手并掌握 YOLO
2024-08-09 10:47:42
1199
1
原创 YOLOv9改进 ,YOLOv9改进损失函数采用SlideLoss来处理样本不平衡问题
Slide Loss的核心在于处理样本不平衡问题,对检测中的难易样本进行加权。其主要目的是在训练过程中,将更多的关注放在难样本上,让模型对这些样本的学习更为深入,而不过度关注简单样本。Slide Loss 的设计灵感来源于样本的 IoU 值。易样本:IoU 值高于 µ 的样本。难样本:IoU 值低于 µ 的样本。Slide Loss 的权重设计像“滑梯”形状,对接近阈值 µ 的样本赋予较高权重。赋予低于阈值的难样本较高的权重,使模型在训练时对这些样本更为关注。
2024-11-13 09:35:05
139
原创 基于matlab的CNN食物识别分类系统,matlab深度学习分类,训练+数据集+界面
饮食在人们的日常生活、营养与医疗建议以及运动员等专业人士的训练上起着越来越重要的作用。随着互联网的发展和医学的进步,人们普遍上传分享和记录的食物图像形成了非常多的数据库,为了改善饮食结构,塑造更健康的生活方式,分析食物的种类、热量和进食时间成为了营养学上非常重要的研究方法,本文的使用深度学习算法可以根据用户上传的食物图像自动分析食物种类。深度学习是机器学习领域的一个研究方向。深度学习通过对数据特征的学习将原始数据转化为计算机可以理解的抽象数据,根据学习到的特征,可以对原始数据进行检测或分类。
2024-11-13 00:01:16
158
原创 YOLOv9改进,YOLOv9引入EffectiveSE注意力机制,二次创新RepNCSPELAN4结构
EffectiveSE 模块是改进传统 SE 机制的一个关键组件,解决原始 SE 机制在卷积神经网络(CNN)中可能出现的信息丢失问题。原始的 SE 机制通过学习通道间的依赖关系,对通道进行加权,增强特征图。然而,传统SE模块通过两个全连接(FC)层对通道维度进行压缩再扩展,这一过程可能导致部分通道信息的丢失。而 EffectiveSE 模块的改进简化了这一结构,将原本的两个全连接层替换为一个全连接层,从而避免了通道维度的缩减,保留了原始的通道信息。
2024-11-12 13:34:14
27
原创 YOLOv8改进,YOLOv8改进损失函数采用Inner-IoU,一文构建Inner-SIoU,Inner-GIoU,Inner-DIoU,Inner-CIoU,Inner-MDPIoU全文最详细教程
Inner-IoU引入辅助边界框,通过缩放因子生成不同大小的辅助边界框计算损失。小比例的辅助边界框适用于高 IoU 样本,有助于加快收敛,而大比例的辅助边界框适用于低 IoU 样本。Inner-IoU 流程如图所示(图摘自论文):作者通过将 ratio 值设置 0.7 到 0.8 之间小于 1,产生小于实际边框的辅助边框。实验结果证明其能够对高 IoU 样本产生增益。一文构建Inner-SIoU,Inner-GIoU,Inner-DIoU,Inner-CIoU,Inner-MDPIoU全文最详细教程
2024-11-12 02:43:00
163
原创 YOLOv8/YOLOv11多目标追踪,并手把手教你实现目标追踪轨迹绘制和bytetrack参数解析
YOLOv8/YOLOv11多目标追踪,并手把手教你实现目标追踪轨迹绘制和bytetrack参数解析
2024-11-08 14:30:03
828
2
原创 基于YOLOv8 Web的安全帽佩戴识别检测系统的研究和设计,数据集+训练结果+Web源码
在工地,制造工厂,发电厂等地方,施工人佩戴安全帽能有效降低事故发生概率,在工业制造、发电等领域需要进行施工人员安全帽监测。目前施工监测采用的方案大多是人工巡逻监控和査看监控视频,这类方式往往会出现人力资源消耗大,管理成本高,效率低,漏检和误检概率相对较高的问题。目前大多数的 YOLO 模型还拘泥于公司、企业开发生产的具体产品中,大多数无编程基础的人们并不能直接使用深度学习模型。在手机、电脑人手一台的时代,方便快捷的网页无疑是最好的选择,它不占用任何内存,随用随开。本文设计了一个Web的安全帽佩戴识别检测系统
2024-11-06 15:17:19
1162
2
原创 YOLOv8改进,YOLOv8引入ResCBAM注意力机制,二次创新C2f结构
ResCBAM 模块结合了残差模块和 CBAM,CBAM 首先生成 1D 通道注意力图,然后生成 2D 空间注意力图以增强特征,最终特征通过元素级相加得出,能够更好地聚焦于目标区域,以提升特征表达能力。ResCBAM 工作流程为:输入特征通过 GAP和 GMP 生成不同的空间上下文描述符经过共享的 MLP 后计算出通道注意力图,随后生成空间注意力图最终将输出与输入特征相加形成增强的输出特征。论文地址代码地址下文都是手把手教程,跟着操作即可添加成功。
2024-11-04 17:18:58
191
原创 YOLOv8改进,YOLOv8改进损失函数采用SlideLoss来处理样本不平衡问题,助力涨点
Slide Loss的核心在于处理样本不平衡问题,对检测中的难易样本进行加权。其主要目的是在训练过程中,将更多的关注放在难样本上,让模型对这些样本的学习更为深入,而不过度关注简单样本。Slide Loss 的设计灵感来源于样本的 IoU 值。易样本:IoU 值高于 µ 的样本。难样本:IoU 值低于 µ 的样本。Slide Loss 的权重设计像“滑梯”形状,对接近阈值 µ 的样本赋予较高权重。赋予低于阈值的难样本较高的权重,使模型在训练时对这些样本更为关注。
2024-11-01 17:56:01
121
原创 YOLOv8改进,YOLOv8采用RT-DETR检测头,CVPR 2024
RT-DETR(Real-Time DEtection TRansformer)的核心思想是将 Transformer 架构应用于实时目标检测中,并通过改进编码器和解码器的结构,提升检测速度和准确性,从而超越传统的YOLO系列模型。RT-DETR核心细节:高效的混合编码器:RT-DETR提出了一种高效的混合编码器,通过解耦不同尺度特征的交互,减少了计算冗余。
2024-10-24 02:21:49
152
原创 YOLOv8改进,YOLOv8引入EffectiveSE注意力机制,二次创新C2f结构
EffectiveSE 模块是改进传统 SE 机制的一个关键组件,解决原始 SE 机制在卷积神经网络(CNN)中可能出现的信息丢失问题。原始的 SE 机制通过学习通道间的依赖关系,对通道进行加权,增强特征图。然而,传统SE模块通过两个全连接(FC)层对通道维度进行压缩再扩展,这一过程可能导致部分通道信息的丢失。而 EffectiveSE 模块的改进简化了这一结构,将原本的两个全连接层替换为一个全连接层,从而避免了通道维度的缩减,保留了原始的通道信息。
2024-10-24 01:48:34
124
原创 YOLOv9改进,YOLOv9引入FLAttention注意力机制(ICCV2023),并二次创新RepNCSPELAN4结构
通过引入一种新的线性注意力机制,称为Focused Linear Attention,来解决现有线性注意力方法在视觉任务中的性能下降问题,传统的自注意力机制具有二次计算复杂度,在处理长序列时非常耗费计算资源。而线性注意力通过减少计算复杂度来解决这个问题,但通常会带来性能下降或引入额外的计算开销。Focused Linear Attention 通过两方面的改进来提高性能:关注能力(Focus Ability):传统线性注意力的权重分布过于平滑,无法有效关注到关键信息。
2024-10-23 18:14:44
89
原创 YOLOv8改进,YOLOv8引入ASFF检测头(自适应空间特征融合)
目标检测在处理不同尺度的目标时,常采用特征金字塔结构。然而,这种金字塔结构在单步检测器中存在尺度不一致性问题,即不同尺度的特征层在检测过程中可能产生冲突,导致精度下降。ASFF方法通过学习每个尺度特征的自适应融合权重,过滤掉无用的或冲突的信息,只保留有助于检测的特征,从而提高特征的尺度不变性。ASFF核心步骤如下:特征重缩放:首先将不同层次的特征进行上采样或下采样,使它们具有相同的分辨率。
2024-10-23 17:52:13
186
原创 YOLOv9改进,YOLOv9引入WTConv卷积(ECCV 2024),二次创新RepNCSPELAN4结构
WTConv 的核心思想是通过结合卷积神经网络(CNN)的强大特征提取能力与小波变换的多尺度特性,来实现大感受野的卷积操作,同时避免传统大卷积核带来的参数爆炸问题。传统的卷积操作通过滑动小窗口在图像上逐步执行局部特征提取,感受野的大小直接取决于卷积核的尺寸。随着卷积核的增大,参数量呈指数增长,导致网络训练效率降低、计算资源消耗增加。为解决这些问题,WTConv 提出了在小波域中执行卷积操作的策略。小波变换是一种常用于信号处理的技术,能够将信号分解为不同频率成分。
2024-10-23 17:23:05
106
原创 YOLOv8改进,YOLOv8引入Focused Linear Attention注意力机制(ICCV2023),二次创新C2f结构
通过引入一种新的线性注意力机制,称为Focused Linear Attention,来解决现有线性注意力方法在视觉任务中的性能下降问题,传统的自注意力机制具有二次计算复杂度,在处理长序列时非常耗费计算资源。而线性注意力通过减少计算复杂度来解决这个问题,但通常会带来性能下降或引入额外的计算开销。Focused Linear Attention 通过两方面的改进来提高性能:关注能力(Focus Ability):传统线性注意力的权重分布过于平滑,无法有效关注到关键信息。
2024-10-23 11:41:19
97
原创 YOLO目标检测理论详解,YOLOv1理论知识讲解,超w字精读(学习YOLO框架必备),全网最详细教程
对于初学者的你来说,选择适合的论文、选择通俗易懂又全面的科普文章等,具有太多的偶然性。如果迟迟没有找到合适的文章,那就不能理解什么是 YOLO 检测器,什么又是 Detection with Transformers 框架。对于小白来说,直接上手开源项目难道比较大,而且网上直接带你上手的 YOLO 项目很多,虽然能明白一套训练流程和推理流程,但对于一些 YOLO 模型理论、损失函数和整体框架逻辑显得茫然不知,因此,这期文章我会一步一步带你了解 YOLO 目标检测理论,让你快速上手 YOLO。
2024-10-22 19:42:04
2336
4
原创 YOLOv8改进,YOLOv8采用WTConv卷积(感受野的小波卷积),二次创新C2f结构,ECCV 2024
WTConv 的核心思想是通过结合卷积神经网络(CNN)的强大特征提取能力与小波变换的多尺度特性,来实现大感受野的卷积操作,同时避免传统大卷积核带来的参数爆炸问题。传统的卷积操作通过滑动小窗口在图像上逐步执行局部特征提取,感受野的大小直接取决于卷积核的尺寸。随着卷积核的增大,参数量呈指数增长,导致网络训练效率降低、计算资源消耗增加。为解决这些问题,WTConv 提出了在小波域中执行卷积操作的策略。小波变换是一种常用于信号处理的技术,能够将信号分解为不同频率成分。
2024-10-22 11:04:36
177
原创 YOLOv10改进,YOLOv10二次创新C2f结构采用WTConv卷积(感受野的小波卷积),ECCV 2024
WTConv 的核心思想是通过结合卷积神经网络(CNN)的强大特征提取能力与小波变换的多尺度特性,来实现大感受野的卷积操作,同时避免传统大卷积核带来的参数爆炸问题。传统的卷积操作通过滑动小窗口在图像上逐步执行局部特征提取,感受野的大小直接取决于卷积核的尺寸。随着卷积核的增大,参数量呈指数增长,导致网络训练效率降低、计算资源消耗增加。为解决这些问题,WTConv 提出了在小波域中执行卷积操作的策略。小波变换是一种常用于信号处理的技术,能够将信号分解为不同频率成分。
2024-10-20 00:10:55
188
原创 YOLOv8/YOLOv11使用web界面推理自己的模型,Gradio框架快速搭建
Gradio 是一个开源 Python 库,用于快速构建和共享机器学习模型的 Web 界面。开发者可以通过简单的 Python 代码将机器学习模型封装成交互式应用,无需复杂的设置即可在浏览器中使用自己训练好模型。接下来教你使用 Gradio 框架构建一个简单 Web 界面推理 YOLOv8/YOLOv11 模型
2024-10-15 19:09:27
365
1
原创 YOLOv10使用web界面推理,app.py完美运行,全网最详细教程
Gradio 是一个开源 Python 库,用于快速构建和共享机器学习模型的 Web 界面。开发者可以通过简单的 Python 代码将机器学习模型封装成交互式应用,无需复杂的设置即可在浏览器中使用自己训练好模型。接下来手把手教你运行 YOLOv10 的一个简单 Web 界面推理自己的模型
2024-10-15 10:56:24
350
原创 手把手教你YOLOv8/YOLOv11分割训练自己数据集和推理,并教你使用Labelme工具标注数据(附分割网络结构图)
YOLOv8-seg 和 YOLOv11-seg 都是一种高效实例分割算法,实例分割模型的输出是一组勾勒出图像中每个物体的遮罩或轮廓,以及每个物体的类标签和置信度分数。当你不仅需要知道物体在图像中的位置,还需要知道它们的具体形状时,实例分割就非常有用了,功能非常强大,可以应对各种视觉任务。 YOLOv11-seg 则在 YOLOv8-seg 基础上进一步魔改了模型架构,相对分割速度可能更快,其他指标性能有待测试。实例分割可以用于自动驾驶、医疗图像处理、智能农业监控等领域。
2024-10-13 20:47:49
548
原创 YOLOv9分割改进 ,YOLOv9分割改进主干网络为华为EfficientNet,助力涨点
EfficientNet论文中研究了卷积网络的缩放和,并证明对深度,宽度和分辨率复合缩放的重要性,因此精度和效率更好。为了阐述相关的原理,我们提出了简单有效的复合缩放方法,使得模型缩放具有一定设计准则,同时兼顾了模型的效率。我下文将 YOLOv9 分割模型改进主干网络为 EfficientNet 融合网络结构。论文地址代码地址下文都是手把手教程,跟着操作即可添加成功把环境配置好,数据集处理好,训练基本能成功,创作不易,请帮忙点一个爱心,关注我,带你不挂科!
2024-10-12 23:11:22
499
原创 YOLOv11改进 | 融合篇,YOLOv11改进主干网络为MobileNetV3+CA注意机制
MobileNetV3通过结合硬件感知网络架构搜索(NAS)和NetAdapt算法,通过新颖的架构改进进一步提升了性能。本文开始探讨了自动化搜索算法与网络设计如何协同工作,以利用互补方法来提升整体技术水平。通过这一过程,创建了两个新的MobileNet模型:MobileNetV3-Large和MobileNetV3-Small,分别针对高资源和低资源使用场景。这些模型随后被适配并应用于目标检测和语义分割任务。
2024-10-11 13:34:31
328
原创 YOLOv9分割训练自己数据和推理训练好模型,并教你使用Labelme工具标注数据(附YOLOv9分割模型结构图),全网最详细教程
YOLOv9 通过研究数据传输时的信息丢失问题,提出了可编程梯度信息(PGI)和通用高效层聚合网络(GELAN)架构,提高了参数利用率和模型性能。与 SOTA 方法相比,GELAN 仅使用传统卷积算子即可实现更好的参数利用率。PGI 适用于从轻型到大型的各种模型,使从头开始训练的模型能够获得更好的结果。YOLOv9 被评价为新的 SOTA 实时目标检测器。接下来本文手把手教你训练自己分割数据集和推理训练好的分割模型。
2024-10-09 23:24:14
476
原创 YOLOv11改进,YOLOv11添加CA注意力机制,二次创新C2f结构
CA注意机制生成的特征图为然后分别编码为一对方向感知和位置敏感注意力图,其可以被完全应用于输入特征图以增加感兴趣对象的表示。坐标保持简单,可以灵活插入经典网络。
2024-10-09 11:04:08
268
原创 YOLOv11改进,YOLOv11改进损失函数采用Powerful-IoU:自适应惩罚因子和基于锚框质量的梯度调节函数(2024年最新IOU)
物体定位是物体检测中的一项关键任务,它严重依赖于边界框回归 (BBR) 损失函数的评估和优化。因此,边界框回归损失函数显著影响物体检测器的性能。大多数 BBR 损失可归类为 𝑙𝑛-norm 和基于 IoU 的损失。如下图所示,不同IoU 损失函数引导的锚框回归过程。彩色框为不同损失函数引导的锚框在回归过程中的分布。很明显,PIoU 损失引导的锚框回归最快,可以最快地逼近目标框。而且,除 PIoU 损失外,所有损失函数引导的锚框都存在面积扩大的问题,而 PIoU 损失引导的锚框不存在此问题。
2024-10-09 10:40:07
350
原创 YOLOv11改进 ,YOLOv11改进主干网络为MobileNetV3,助力涨点
MobileNetV3通过结合硬件感知网络架构搜索(NAS)和NetAdapt算法,通过新颖的架构改进进一步提升了性能。本文开始探讨了自动化搜索算法与网络设计如何协同工作,以利用互补方法来提升整体技术水平。通过这一过程,创建了两个新的MobileNet模型:MobileNetV3-Large和MobileNetV3-Small,分别针对高资源和低资源使用场景。这些模型随后被适配并应用于目标检测和语义分割任务。
2024-10-08 17:29:20
328
原创 YOLOv10改进 | 融合篇,YOLOv10改进主干网络为MobileNetV3+新增小目标检测头,助力涨点
小目标检测难点众多,导致很多算法对小目标的检测效果远不如大中型目标。影响算法性能的主要原因如下:第一,小目标分辨率低、信息量不足,导致神经网络提取到的有效特征较少。第二,小目标在图像中所占的区域较小,易受背景干扰,这对算法的定位性能要求较高。第三,小物体标注困难,训练数据有限,导致模型泛化能力差。例如多尺度学习、无锚机制和生成对抗学习等方法,都能提高小目标检测的准确性和鲁棒性。为了改善小目标漏检现象严重的问题,我在 YOLOv10 中增加了 P2 检测头,有四个检测头并且改进主干网络为MobileNetV3
2024-10-07 14:52:01
506
原创 YOLOv11改进,YOLOv11添加DCNv4可变性卷积(windows系统成功编译),二次创新C2f结构,全网最详细教程
引入了可变形卷积 v4 (DCNv4),这是一种为广泛视觉应用设计的高效且有效的操作算子。DCNv4通过两项关键增强解决了其前身DCNv3的局限性:1. 移除空间聚合中的softmax归一化,以增强其动态特性和表达能力;2. 优化内存访问以最小化冗余操作,从而加速计算。这些改进使得DCNv4相比DCNv3显著加快了收敛速度,并且处理速度大幅提升,前向传播速度超过三倍。DCNv4在多个任务中表现出色,包括图像分类、实例和语义分割,特别是在图像生成方面表现突出。
2024-10-07 13:04:55
613
原创 YOLOv10改进,YOLOv10添加CA注意力机制,二次创新C2f结构,助力涨点
在本文中,提出了一种新的移动网络注意力机制,将位置信息嵌入到信道注意力中称之为“协调注意力”。与渠道关注不同通过 2D 全局池将特征张量转换为单个特征向量,坐标注意力因子将通道注意力转化为两个 1D 特征编码过程,这两个过程分别沿着两个空间方向聚合特征。通过这种方式,可以沿着一个空间方向捕获长程依赖性和均值,同时可以沿着另一个空间方向。生成的特征图为然后分别编码为一对方向感知和位置敏感注意力图,其可以被完全应用于输入特征图以增加感兴趣对象的表示。坐标保持简单,可以灵活插入经典网络。
2024-10-06 19:07:27
480
原创 YOLOv10改进 | 融合篇,YOLOv10添加CA注意力机制+新增小目标检测头,助力涨点
小目标检测难点众多,导致很多算法对小目标的检测效果远不如大中型目标。影响算法性能的主要原因如下:第一,小目标分辨率低、信息量不足,导致神经网络提取到的有效特征较少。第二,小目标在图像中所占的区域较小,易受背景干扰,这对算法的定位性能要求较高。第三,小物体标注困难,训练数据有限,导致模型泛化能力差。例如多尺度学习、无锚机制和生成对抗学习等方法,都能提高小目标检测的准确性和鲁棒性。为了改善小目标漏检现象严重的问题,我在 YOLOv10 中增加了 P2 检测头,相当于有四个检测头,使网络能检测到更小的目标。
2024-10-06 18:28:01
1053
原创 YOLOv10改进 | 融合篇,YOLOv10改进主干网络为GhostNetV3+MLCA注意机制
GhostNetV3 引入了多分支重参数化机制,通过在卷积层中添加额外的平行分支来改善性能。这些分支在训练过程中提供更多的表征能力,最终通过将多个分支重组为一个卷积层来实现推理时的高效性。通过添加配备 BatchNorm 层的重复分支将再参数化引入紧凑型模型。因此作为YOLOv10的主干网络,在此基础上,融入一种轻量级的混合局部通道注意力(MLCA)模块,以提高目标检测网络的性能。该模块能够同时结合通道信息和空间信息,以及局部信息和全局信息,从而提升网络的表示效果。
2024-10-06 00:04:25
239
原创 手把手教你使用Tensorflow2.7完成人脸识别系统,web人脸识别(Flask框架)+pyqt界面,保姆级教程
随着人工智能的不断发展,机器学习和深度学习这门技术也越来越重要,一时间成为码农的学习热点。下面将使用深度学习技术开发一个人脸识别系统。之前使用 Tensorflow1.5 完成人脸识别(之前版本的链接:手把手教你完成深度学习人脸识别系统加入 Flask 框架完成一个简单的 web 版人脸识别Tensorflow1.5 改成Tensorflow2.7数据预处理代码更加自动完整源码+数据集+模型,
2024-10-04 03:14:42
1319
原创 YOLOv11来了,使用YOLOv11训练自己的数据集和推理(附YOLOv11网络结构图)
YOLOv11 由 Ultralytics 在 2024 年 9 月 30 日发布, 最新的 YOLOv11 模型在之前的 YOLO 版本引入了新功能和改进,以进一步提高性能和灵活性。YOLO11 在快速、准确且易于使用,使其成为各种对象检测和跟踪、实例分割、图像分类和姿态估计任务的绝佳选择。
2024-10-02 03:22:42
16932
36
原创 YOLOv10改进,YOLOv10改进主干网络为GhostNetV2(华为的轻量化架构)
一种用于移动应用的新 GhostNetV2 架构。提出的 DFC 注意力基于全连接层构建,不仅能在常见硬件上快速执行,还能捕捉远距离像素之间的依赖关系
2024-10-01 21:19:16
456
原创 YOLOv10改进,YOLOv10改进主干网络为GhostNetV3(2024年华为的轻量化架构,全网首发),助力涨点
GhostNetV3 引入了多分支重参数化机制,通过在卷积层中添加额外的平行分支来改善性能。这些分支在训练过程中提供更多的表征能力,最终通过将多个分支重组为一个卷积层来实现推理时的高效性。通过添加配备 BatchNorm 层的重复分支将再
2024-10-01 20:58:15
508
原创 YOLOv8改进 ,YOLOv8改进主干网络为华为的轻量化架构GhostNetV1
YOLOv8改进主干网络为华为的轻量化架构GhostNetV1,作者提出了一种新颖的 Ghost 模块,用于通过廉价操作生成更多的特征图,Ghost 模块可以作为即插即用组件来升级现有的卷积神经网络。
2024-09-30 21:19:17
410
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅