Winows10 +darknet53+Yolo v3训练自己的模型并测试

Winows10 +darknet53+Yolo v3训练自己的模型并测试

Winows10 +darknet53+Yolo v3训练自己的模型并测试

系统环境:
Windows10,VS2015,CUDA10.1(匹配cudnn7.6.0),OpenCV3.4.0
一、测试官方代码
1、下载windows版yolov3源码:https://github.com/AlexeyAB/darknet
2、修改darknet.vcxproj文件
进入…\darknet-master\build\darknet目录,由于darknet.vcxproj 中使用的是CUDA 9.1,所以需要利用编辑器(记事本即可)打开darknet.vcxproj ,将所有CUDA 9.1修改为自己对应的CUDA版本.
修改CUDA版本3、在VS中打开解压后…\darknet-master\build\darknet目录下的darknet.sln(无gpu的打开darknet_no_gpu.sln),配置平台改为Release x64。
打开darknet
设置
4、右击darknet文件,点属性。根据自己opencv安装目录和版本,添加包含目录、库目录和依赖项
包含目录
库目录
添加依赖项
5、添加其他文件:在…\opencv\build\x64\vc14\bin目录下找到3个.dll文件复制粘贴到 …\darknet-master\build\darknet\x64 目录下。
6、生成darknet.exe:在VS中右击darknet文件,点击生成,等待一会没错误的话就可以在…\darknet-master\build\darknet\x64目录下生成darknet.exe。
7、下载作者预先训练好的模型:https://pjreddie.com/media/files/yolov3.weights;要是有百度网盘会员的话可以在网盘下载,链接:https://pan.baidu.com/s/1DCqU_7HY_6tK-gWaE6iwcQ 提取码:lhs9。下载好后直接放在…\darknet-master\build\darknet\x64下。
8、测试:打开…\darknet-master\build\darknet\x64,找到并双击darknet_yolo_v3.cmd会出现以下结果,表明成功编译。测试
二、训练自己的模型
1、制作VOC数据集
1.1、安装labelimg,对图片进行标注,下载地址里面有使用教程。下载地址:链接https://pan.baidu.com/s/130MAFtIvuoC84kPgcckecQ提取码:z364
1.2、在…\darknet-master\build\darknet目录下新建一个文件夹,命名为:VOCdevkit2007,在其中创建如下文件夹:数据集。在这里插入图片描述
其中,JPEGImages用来存放原始图片,Annotations用来存放标注后所有的.xml文件。
1.3、使用代码在ImageSets\Main目录下生成test.txt(测试集)、train.txt(训练集)、val.txt(验证集)、trainval.txt(训练验证集,由train.txt和val.txt组成)。VOC2007中, test大概是整个数据集的50%,trainval是整个数据集剩下的50%;train大概是trainval的50%,val是trainval剩下的50%。所占比例可在代码中修改,以Python为例(其中trainval是整个数据集的70%):
在这里插入图片描述生成文件的代码如下:

import os
import random

trainval_percent = 0.7   # trainval占总数的比例
train_percent = 0.5   # train占trainval的比例
xmlfilepath = r'E:\xun\darknet-master\build\darknet\VOCdevkit2007\VOC2007\Annotations'
txtsavepath = r'E:\xun\darknet-master\build\darknet\VOCdevkit2007\VOC2007\ImageSets\Main'
total_xml = os.listdir(xmlfilepath)

num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)

ftrainval = open(txtsavepath + r'\trainval.txt', 'w')
ftest = open(txtsavepath + r'\test.txt', 'w')
ftrain = open(txtsavepath + r'\train.txt', 'w')
fval = open(txtsavepath + r'\val.txt', 'w')

for i in list:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        ftrainval.write(name)
        if i in train:
            ftrain.write(name)
        else:
            fval.write(name)
    else:
        ftest.write(name)

ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

1.4、将VOC数据集转换成yolo3所需要的txt文件
将…\darknet-master\scripts目录下的voc_label.py文件拷贝到…\darknet-master\build\darknet\VOCdevkit2007目录下,并重命名为voc_label_mine.py,打开进行如下修改。


# 第7行修改所需sets
sets=[('2007', 'train'), ('2007', 'val'),  ('2007', 'test')]
# 第9行修改为自己的类别,我这里就一个,所以改为
classes = ["egg"]
# 第26、27行修改路径,可改为绝对路径
    in_file = open('VOC%s/Annotations/%s.xml'%(year, image_id))
    out_file = open('VOC%s/labels/%s.txt'%(year, image_id), 'w')
# 第48、49、50行修改路径,可改为绝对路径
    if not os.path.exists('VOC%s/labels/'%(year)):
        os.makedirs('VOC%s/labels/'%(year))
    image_ids = open('VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
# 第53行修改路径,可改为绝对路径
        list_file.write('%s/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id))

完成后就会生成如下文件,其中txt文件中为对应图片的绝对路径,labels文件中为所有图片的xml文件转成的txt文件:
txt
在这里插入图片描述
2、下载预训练权重darknet53.conv.74,下载完成后放在…\darknet-master\build\darknet\x64路径下。
链接:https://pan.baidu.com/s/1iqdxq5rCwpevUjDjZVD9Zw 提取码:zn8u
3、修改文件
3.1、修改voc.data
打开…\darknet-master\build\darknet\x64\data中的voc.data,修改自己的类别,我的是一个,所以class=1;修改train和valid对应的路径,backup就是最后训练好的权重存放位置。
在voc
3.2、修改voc.names
打开…\darknet-master\build\darknet\x64\data中的voc.names,替换成自己的类。
在这里插入图片描述
3.3、修改yolov3-voc.cfg
打开…\darknet-master\build\darknet\x64中的yolov3-voc.cfg,并重命名为yolov3-egg.cfg.做如下修改:
一共需要改三处,每处有三个地方需要修改,每次都是先修改[yolo]下的classes为对应的类别数,再修改[yolo]对应上面 [convolutional]下的filters为(classes+5)*3 random=1 # 多尺度输出为1,显存小时改为0关闭。
在这里插入图片描述
4、开始训练
打开cmd,cd到…\darknet-master\build\darknet\x64目录下,在此目录下新建results文件夹,输入命令:darknet.exe detector train data/voc.data yolov3-egg.cfg darknet53.conv.74
每迭代1000次在results文件夹中生成一个权重文件。
xunlian
5、测试
5.1、测试图片:打开cmd,cd到…\darknet-master\build\darknet\x64目录下,输入命令:darknet.exe detector test data\voc.data yolov3-egg.cfg results\yolov3-egg_last.weights
在这里插入图片描述
按照提示输入要检测图片的绝对路径:
在这里插入图片描述

5.2、测试摄像头:打开cmd,cd到…\darknet-master\build\darknet\x64目录下,输入命令:darknet.exe detector demo data\voc.data yolov3-egg.cfgresults\yolov3-egg_3000.weights -c 0

参考:1、Labelimg制作数据集
2、Windows下使用Yolov3(GPU)训练+测试自己的数据集

  • 1
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
<h3>回答1:</h3><br/>将voc标签格式转换为yolo格式的步骤如下: 1. 读取voc标签文件,获取每个标注框的坐标信息和类别信息。 2. 将坐标信息转换为yolo格式的相对坐标,即中心点坐标和宽高的比例。 3. 将类别信息转换为yolo格式的类别编号,从开始。 4. 将转换后的标签信息保存到对应的yolo标签文件中。 划分训练集和测试集的步骤如下: 1. 将所有数据集按照一定比例分为训练集和测试集,通常是将数据集的70%作为训练集,30%作为测试集。 2. 将训练集和测试集的图像和标签文件分别存放在不同的文件夹中。 3. 在训练时,使用训练集进行模型训练测试集用于测试模型的性能。 <h3>回答2:</h3><br/>介绍 VOC标签格式和YOLO标签格式是目标检测任务中最常见的两种标签格式。VOC标签格式是指PASCAL VOC数据集使用的标签格式,通常为XML格式。而YOLO标签格式是指Darknet团队开发的YOLO算法使用的标签格式,通常为txt格式。本文将介绍如何将VOC标签格式转换为YOLO标签格式,并且如何划分训练集和测试集。 VOC标签格式转YOLO标签格式 VOC标签格式包含每个图像中的所有目标的信息,并且每个目标都包含类别、边界框位置和部分属性(如难度)等信息。从VOC标签格式转换为YOLO标签格式的关键是要将边界框位置信息归一化为0到1之间的值。YOLO标签格式只需要目标类别和边界框的中心坐标和宽度/高度比例即可。具体步骤如下: 1. 读取VOC标签格式文件,获取每张图像中的目标数量、类别、位置和部分属性等信息。 2. 对每个目标进行边界框位置信息的归一化,计算边界框中心坐标和宽度/高度比例。 3. 将每个目标的类别和边界框信息转换为YOLO标签格式并保存为txt格式的文件。 划分训练集和测试集 划分训练集和测试集的目的是为了评估模型的性能。训练集用于训练模型,而测试集用于评估模型在新数据上的表现。一般来说,训练集和测试集应该互不重叠,并且测试集应该具有与训练集相似的数据分布。 划分训练集和测试集的方法很多,常见的有随机划分、按文件名划分和按目录划分等。其中,按目录划分是最常见的方法。一般来说,数据集应该先按类别分组,然后再按目录划分。例如,对于VOC数据集,可以将JPEGImages目录下的图像和Annotations目录下的标签文件分别放在同一个目录中,并按类别分组。然后,可以将每个类别的数据集划分为训练集和测试集,建议将测试集的比例设置为20-30%。 总结 将VOC标签格式转换为YOLO标签格式并划分训练集和测试集是目标检测任务中非常重要的一步。这可以使得我们能够使用更多的数据来训练模型,并且能够准确评估模型在新数据上的表现。划分训练集和测试集的方法很多,需要根据数据集的特点进行选择。 <h3>回答3:</h3><br/>首先,VOC标签格式和YOLO标签格式有一些不同之处,需要进行转换。VOC标签格式是一种XML文件格式,其中包含图片的基本信息、标注信息以及对象的类别、坐标等信息。而YOLO标签格式是一种txt文件格式,每一行都表示一张图片,包含该图片中物体的类别以及bounding box坐标信息等。 转换VOC格式标签为YOLO格式标签可以使用Python编程语言来完成。具体操作步骤如下: 1、读取XML格式的VOC标签文件,获取图片的基本信息和对象的类别、坐标信息等。 2、根据YOLO标签格式的要求,将图片基本信息和对象类别信息分别存储到txt文件的不同行中。 3、将VOC标签格式中的坐标信息转换为YOLO标签格式的坐标信息。 4、将所有信息存储到txt文件中。 划分训练集和测试集也需要一定的步骤: 1、将所有图片按比例分配给训练集和测试集。 2、根据所选比例,将标签文件也分配到训练集和测试集的文件夹中。 3、在训练测试之前,可以随机化数据集的顺序。 4、在使用YOLO进行训练测试时,需要使用train.txt和val.txt来载入训练测试集。 在实际的操作中,可以使用Python编写脚本来自动完成上述操作,节省时间和减少人工操作的误差。同时,开发者还可以根据需要进行自定义,如结合TensorFlow、Keras等框架进行模型训练和优化,以获得更准确的目标检测和分割结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CLK688

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值