31.讲下Attention的原理、优缺点

注意力机制(Attention)在深度学习和神经网络中用于处理序列数据,通过动态分配权重,聚焦相关部分以提升模型性能。它能有效捕捉长距离依赖,适用于多种任务,但计算开销大,对数据依赖强,且解释性较差。在应用中需要考虑架构和优化策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        注意力机制(Attention)是一种用于深度学习和神经网络中的关键技术,它允许模型在处理序列数据或集合数据时,专注于输入的不同部分,以便更好地捕捉关联和信息。

1 原理:

        Attention机制的原理是允许模型根据输入序列中不同位置的相关性,动态地分配不同权重。在处理序列数据时,它可以帮助模型聚焦于与当前预测或输出最相关的部分。减少处理⾼维输⼊数据的计算负担,结构化的选取输⼊的⼦集,从⽽降低数据的维度。让系统更加容易的找到输⼊的数据中与当前输出信息相关的有⽤信息,从⽽提⾼输出的质量。帮助类似于decoder这样的模型框架更好的学到多种内容模态之间的相互关系。通常,Attention机制包括三个主要步骤

  1. 输入序列和输出序列的每个元素都与所有其他元素计算相似度分数
  2. 利用这些相似度分数计算权重,以决定每个元素对输出的贡献。
  3. 输出序列中的每个元素是输入序列的加权组合,其中权重由相似度分数决定。

        具体来说,一个常见的 Attention 机制包括以下组件:

  • 查询
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

轨迹的路口

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值