本文深入探讨了图的基本概念,包括图的定义、关键术语,以及邻接矩阵和邻接表的存储结构。随后讲解了深度优先搜索(DFS)和广度优先搜索(BFS),以及图的连通性分析、Prim算法和Kruskal算法用于最小生成树的构建。此外,还涉及了最短路径问题,如单源最短路径算法(Dijkstra)和多源最短路径算法,以及DAG和拓扑排序的方法。
摘要由CSDN通过智能技术生成

1 图的基本概念

  1. 图是一种复杂的非线性结构
  2. 任意两个节点之间都可能存在关系,即节点之间的连接关系是任意的

1.1 图的定义

	用G表示图,G=(V,E),其中V是G中顶点的有穷非空集合,E是V中顶点的偶对(称为边)的有穷集合,也称为图的边集。
	记G中顶点数为V(G)=|V|,边数E(G)=|E|,它们分别称为图G的阶和规模

1.2 图的相关术语

  1. 有向图和无向图:如果G中每条边都是都方向的,则G称为有向图,反之则为无向图
  2. 有向图用圆括号表示边,(V1,V2)表示V1与V2之间的边,无向图用尖括号表示边,<V1,V2>表示以V1为起点V2为终点的一条有向边。
  3. 完全图: 对于无向图,任意两顶点之间存在边;对于有向图,任意两顶点之间存在两条反向的边
  4. 度:无向图的度为所有与该顶点相连的边的数量极为该顶点的度,对于无向图,分为出度和入度,出度为所有以该顶点为起点的边数量,入度为所有以该顶点为终点的边的数量。

2. 图的存储结构

存储图的信息,主要包括两部分,顶点的信息和边的信息

2.1 邻接矩阵

用一个二维数组表示图中各顶点之间的关系
在这里插入图片描述

2.2 邻接矩阵的建立

typedef struct ENode ENode;
struct ENode
{
	int v1, v2;	//有向边
	int weight;	//权重
};
typedef struct Graph Graph;
struct Graph
{
	int Nv;		//顶点数
	int Ne;		//边数
	int G[MaxV][MaxV];
	int Data[MaxV];
};

2.3 邻接矩阵操作集

Graph* CreatGraph(int V)
{

	Graph* g = new Graph;
	g->Ne = 0;
	g->Nv = V;
	for (int i = 0; i < g->Nv;i++)
	{
		for (int j = 0; j < g->Nv; j++)
		{
			g->G[i][j] = MaxNum;
		}
	}
	return g;
}
void AddEdge(Graph* g, ENode& e)
{
	g->G[e.v1][e.v2] = e.weight;
}

2.4 邻接表

typedef struct ENode ENode;
struct ENode
{
	int v1, v2;	//有向边
	int weight;	//权重
};
typedef struct AdjNode AdjNode;
struct AdjNode
{
	int v;
	AdjNode* next;
};
typedef struct HeadNode HeadNode;
struct HeadNode
{
	//int data;
	AdjNode* next;
};
typedef struct Graph Graph;
struct Graph
{
	int Nv;		//顶点数
	int Ne;		//边数
	HeadNode* h;
	int Data[MaxV];
};

2.5 邻接表的操作集

Graph* CreatGraph(int V)
{

	Graph* g = new Graph;
	g->Ne = 0;
	g->Nv = V;
	g->h=new HeadNode[V]{};
	
	return g;
}
void AddEdge(Graph* g, ENode& e)
{
	g->h[e.v1].next=g->h[e.v2].next;
}

3. 图的遍历

3.1 深度优先搜索(DFS)

void DFS(Graph* g,int x)
{
	g->visit[x] = true;
	//do something
	for (int i = FindV(g, x); i >= 0; i = FindV(g, x))
	{
		if(!g->visit[i])
			DFS(g, i);
	}
	
}

3.2 广度优先搜索(BFS)

void BFS(Graph* g,int x)
{
	queue<int> q;
	q.push(x);
	//do something
	g->visit[x] = true;
	while(!q.empty())
	{
		int tmp = q.front();
		q.pop();
		for (int i = FindV(g, tmp); i >= 0; i = FindV(g, tmp))
		{
			if (!g->visit[i])
			{
				q.push(i);
				//do something
				g->visit[x] = true;
			}
		}
	}
}

4. 图的连通性

  1. 无向图:在遍历的时候对遍历过的结点计数,若节点数等于图的总结点数,则图是连通图

  2. 无向图:

     	强连通:若 G 是有向图,如果对图 G 中任意两个顶点 u 和 v,既存在从 u 到 v 的路径,
     也存在从 v 到 u 的路径,则称该有向图为强连通有向图。对于非强连通图,
     其极 大强连通子图称为其强连通分量。
    
     	单连通:若 G 是有向图,如果对图 G 中任意两个顶点 u 和 v,
     存在从 u 到 v 的路径或从 v 到 u 的路径,则称该有向图为单连通有向图。
    
     	弱连通:若 G 是有向图,如果忽略图 G 中每条有向边的方向,得到的无向图
     (即有向图的基图)连通,则称该有向图为弱连通有向图
    

5. 最小生成树

最小生成树:一棵树,所有顶点都在里面,共有| V |-1条边都在图里,同时边的权重和最小(贪心算法)

  1. 只能用图里有的边
  2. 不能有回路
  3. 正好用掉 V - 1条边

5.1 Prim算法 --O( |V|2 ) —>稠密图

/* 邻接矩阵存储 - Prim最小生成树算法 */

Vertex FindMinDist( MGraph Graph, WeightType dist[] )
{ /* 返回未被收录顶点中dist最小者 */
    Vertex MinV, V;
    WeightType MinDist = INFINITY;

    for (V=0; V<Graph->Nv; V++) {
        if ( dist[V]!=0 && dist[V]<MinDist) {
            /* 若V未被收录,且dist[V]更小 */
            MinDist = dist[V]; /* 更新最小距离 */
            MinV = V; /* 更新对应顶点 */
        }
    }
    if (MinDist < INFINITY) /* 若找到最小dist */
        return MinV; /* 返回对应的顶点下标 */
    else return ERROR;  /* 若这样的顶点不存在,返回-1作为标记 */
}

int Prim( MGraph Graph, LGraph MST )
{ /* 将最小生成树保存为邻接表存储的图MST,返回最小权重和 */
    WeightType dist[MaxVertexNum], TotalWeight;
    Vertex parent[MaxVertexNum], V, W;
    int VCount;
    Edge E;
    
    /* 初始化。默认初始点下标是0 */
       for (V=0; V<Graph->Nv; V++) {
        /* 这里假设若V到W没有直接的边,则Graph->G[V][W]定义为INFINITY */
           dist[V] = Graph->G[0][V];
           parent[V] = 0; /* 暂且定义所有顶点的父结点都是初始点0 */ 
    }
    TotalWeight = 0; /* 初始化权重和     */
    VCount = 0;      /* 初始化收录的顶点数 */
    /* 创建包含所有顶点但没有边的图。注意用邻接表版本 */
    MST = CreateGraph(Graph->Nv);
    E = (Edge)malloc( sizeof(struct ENode) ); /* 建立空的边结点 */
           
    /* 将初始点0收录进MST */
    dist[0] = 0;
    VCount ++;
    parent[0] = -1; /* 当前树根是0 */

    while (1) {
        V = FindMinDist( Graph, dist );
        /* V = 未被收录顶点中dist最小者 */
        if ( V==ERROR ) /* 若这样的V不存在 */
            break;   /* 算法结束 */
            
        /* 将V及相应的边<parent[V], V>收录进MST */
        E->V1 = parent[V];
        E->V2 = V;
        E->Weight = dist[V];
        InsertEdge( MST, E );
        TotalWeight += dist[V];
        dist[V] = 0;
        VCount++;
        
        for( W=0; W<Graph->Nv; W++ ) /* 对图中的每个顶点W */
            if ( dist[W]!=0 && Graph->G[V][W]<INFINITY ) {
            /* 若W是V的邻接点并且未被收录 */
                if ( Graph->G[V][W] < dist[W] ) {
                /* 若收录V使得dist[W]变小 */
                    dist[W] = Graph->G[V][W]; /* 更新dist[W] */
                    parent[W] = V; /* 更新树 */
                }
            }
    } /* while结束*/
    if ( VCount < Graph->Nv ) /* MST中收的顶点不到|V|个 */
       TotalWeight = ERROR;
    return TotalWeight;   /* 算法执行完毕,返回最小权重和或错误标记 */
}

5.2 Kruskal算法 --O( |E| log |E| ) —>稀疏图

/* 邻接表存储 - Kruskal最小生成树算法 */

/*-------------------- 顶点并查集定义 --------------------*/
typedef Vertex ElementType; /* 默认元素可以用非负整数表示 */
typedef Vertex SetName;     /* 默认用根结点的下标作为集合名称 */
typedef ElementType SetType[MaxVertexNum]; /* 假设集合元素下标从0开始 */

void InitializeVSet( SetType S, int N )
{ /* 初始化并查集 */
    ElementType X;

    for ( X=0; X<N; X++ ) S[X] = -1;
}

void Union( SetType S, SetName Root1, SetName Root2 )
{ /* 这里默认Root1和Root2是不同集合的根结点 */
    /* 保证小集合并入大集合 */
    if ( S[Root2] < S[Root1] ) { /* 如果集合2比较大 */
        S[Root2] += S[Root1];     /* 集合1并入集合2  */
        S[Root1] = Root2;
    }
    else {                         /* 如果集合1比较大 */
        S[Root1] += S[Root2];     /* 集合2并入集合1  */
        S[Root2] = Root1;
    }
}

SetName Find( SetType S, ElementType X )
{ /* 默认集合元素全部初始化为-1 */
    if ( S[X] < 0 ) /* 找到集合的根 */
        return X;
    else
        return S[X] = Find( S, S[X] ); /* 路径压缩 */
}

bool CheckCycle( SetType VSet, Vertex V1, Vertex V2 )
{ /* 检查连接V1和V2的边是否在现有的最小生成树子集中构成回路 */
    Vertex Root1, Root2;

    Root1 = Find( VSet, V1 ); /* 得到V1所属的连通集名称 */
    Root2 = Find( VSet, V2 ); /* 得到V2所属的连通集名称 */

    if( Root1==Root2 ) /* 若V1和V2已经连通,则该边不能要 */
        return false;
    else { /* 否则该边可以被收集,同时将V1和V2并入同一连通集 */
        Union( VSet, Root1, Root2 );
        return true;
    }
}
/*-------------------- 并查集定义结束 --------------------*/

/*-------------------- 边的最小堆定义 --------------------*/
void PercDown( Edge ESet, int p, int N )
{ /* 改编代码4.24的PercDown( MaxHeap H, int p )    */
  /* 将N个元素的边数组中以ESet[p]为根的子堆调整为关于Weight的最小堆 */
    int Parent, Child;
    struct ENode X;

    X = ESet[p]; /* 取出根结点存放的值 */
    for( Parent=p; (Parent*2+1)<N; Parent=Child ) {
        Child = Parent * 2 + 1;
        if( (Child!=N-1) && (ESet[Child].Weight>ESet[Child+1].Weight) )
            Child++;  /* Child指向左右子结点的较小者 */
        if( X.Weight <= ESet[Child].Weight ) break; /* 找到了合适位置 */
        else  /* 下滤X */
            ESet[Parent] = ESet[Child];
    }
    ESet[Parent] = X;
}

void InitializeESet( LGraph Graph, Edge ESet )
{ /* 将图的边存入数组ESet,并且初始化为最小堆 */
    Vertex V;
    PtrToAdjVNode W;
    int ECount;

    /* 将图的边存入数组ESet */
    ECount = 0;
    for ( V=0; V<Graph->Nv; V++ )
        for ( W=Graph->G[V].FirstEdge; W; W=W->Next )
            if ( V < W->AdjV ) { /* 避免重复录入无向图的边,只收V1<V2的边 */
                ESet[ECount].V1 = V;
                ESet[ECount].V2 = W->AdjV;
                ESet[ECount++].Weight = W->Weight;
            }
    /* 初始化为最小堆 */
    for ( ECount=Graph->Ne/2; ECount>=0; ECount-- )
        PercDown( ESet, ECount, Graph->Ne );
}

int GetEdge( Edge ESet, int CurrentSize )
{ /* 给定当前堆的大小CurrentSize,将当前最小边位置弹出并调整堆 */

    /* 将最小边与当前堆的最后一个位置的边交换 */
    Swap( &ESet[0], &ESet[CurrentSize-1]);
    /* 将剩下的边继续调整成最小堆 */
    PercDown( ESet, 0, CurrentSize-1 );

    return CurrentSize-1; /* 返回最小边所在位置 */
}
/*-------------------- 最小堆定义结束 --------------------*/


int Kruskal( LGraph Graph, LGraph MST )
{ /* 将最小生成树保存为邻接表存储的图MST,返回最小权重和 */
    WeightType TotalWeight;
    int ECount, NextEdge;
    SetType VSet; /* 顶点数组 */
    Edge ESet;    /* 边数组 */

    InitializeVSet( VSet, Graph->Nv ); /* 初始化顶点并查集 */
    ESet = (Edge)malloc( sizeof(struct ENode)*Graph->Ne );
    InitializeESet( Graph, ESet ); /* 初始化边的最小堆 */
    /* 创建包含所有顶点但没有边的图。注意用邻接表版本 */
    MST = CreateGraph(Graph->Nv);
    TotalWeight = 0; /* 初始化权重和     */
    ECount = 0;      /* 初始化收录的边数 */

    NextEdge = Graph->Ne; /* 原始边集的规模 */
    while ( ECount < Graph->Nv-1 ) {  /* 当收集的边不足以构成树时 */
        NextEdge = GetEdge( ESet, NextEdge ); /* 从边集中得到最小边的位置 */
        if (NextEdge < 0) /* 边集已空 */
            break;
        /* 如果该边的加入不构成回路,即两端结点不属于同一连通集 */
        if ( CheckCycle( VSet, ESet[NextEdge].V1, ESet[NextEdge].V2 )==true ) {
            /* 将该边插入MST */
            InsertEdge( MST, ESet+NextEdge );
            TotalWeight += ESet[NextEdge].Weight; /* 累计权重 */
            ECount++; /* 生成树中边数加1 */
        }
    }
    if ( ECount < Graph->Nv-1 )
        TotalWeight = -1; /* 设置错误标记,表示生成树不存在 */

    return TotalWeight;
}

6. 最短路径问题

求网络中两个结点间所有路径中,边的权值之和最小得到那一条路径
第一个顶点称为源点
最后一个顶点称为终点

6.1 无权图单源最短路径算法

void BFS_unweight(Graph* g,int x)
{
	queue<int> q;
	int* dist = new int[g->Nv];//记录各顶点到源点的距离,初始化全为-1
	int* path = new int[g->Nv];//记录各顶点到源点的路径,所存元素为路径中该顶点的上一个顶点,初始化全为-1
	Init(dist); Init(path);
	dist[x] = 0;
	while (!q.empty())
	{
		int tmp = q.front();
		q.pop();
		for (int i = FindV(g, tmp); i >= 0; i = FindV(g, tmp))
		{
			if (dist[i] != -1)
			{
				q.push(i);
				dist[i] = dist[tmp] + 1;
				path[i] = tmp;
			}
		}
	}
	q.push(x);
}
void Init(int p[])
{
	for (int i = 0; i < sizeof(p); i++)
	{
		p[i] = -1;
	}
}

6.2 有权图单源最短路径算法(Dijkstra算法)

两种寻找未收录顶点中 dist 最小的方式

  1. 直接扫描所有未收录顶点(稠密图) V2+E
  2. 将 dist 值存到最小堆中(稀疏图效果好) E log V
/* 邻接矩阵存储 - 有权图的单源最短路算法 */

Vertex FindMinDist( MGraph Graph, int dist[], int collected[] )
{ /* 返回未被收录顶点中dist最小者 */
    Vertex MinV, V;
    int MinDist = INFINITY;

    for (V=0; V<Graph->Nv; V++) {
        if ( collected[V]==false && dist[V]<MinDist) {
            /* 若V未被收录,且dist[V]更小 */
            MinDist = dist[V]; /* 更新最小距离 */
            MinV = V; /* 更新对应顶点 */
        }
    }
    if (MinDist < INFINITY) /* 若找到最小dist */
        return MinV; /* 返回对应的顶点下标 */
    else return ERROR;  /* 若这样的顶点不存在,返回错误标记 */
}

bool Dijkstra( MGraph Graph, int dist[], int path[], Vertex S )
{
    int collected[MaxVertexNum];
    Vertex V, W;

    /* 初始化:此处默认邻接矩阵中不存在的边用INFINITY表示 */
    for ( V=0; V<Graph->Nv; V++ ) {
        dist[V] = Graph->G[S][V];
        if ( dist[V]<INFINITY )
            path[V] = S;
        else
            path[V] = -1;
        collected[V] = false;
    }
    /* 先将起点收入集合 */
    dist[S] = 0;
    collected[S] = true;

    while (1) {
        /* V = 未被收录顶点中dist最小者 */
        V = FindMinDist( Graph, dist, collected );
        if ( V==ERROR ) /* 若这样的V不存在 */
            break;      /* 算法结束 */
        collected[V] = true;  /* 收录V */
        for( W=0; W<Graph->Nv; W++ ) /* 对图中的每个顶点W */
            /* 若W是V的邻接点并且未被收录 */
            if ( collected[W]==false && Graph->G[V][W]<INFINITY ) {
                if ( Graph->G[V][W]<0 ) /* 若有负边 */
                    return false; /* 不能正确解决,返回错误标记 */
                /* 若收录V使得dist[W]变小 */
                if ( dist[V]+Graph->G[V][W] < dist[W] ) {
                    dist[W] = dist[V]+Graph->G[V][W]; /* 更新dist[W] */
                    path[W] = V; /* 更新S到W的路径 */
                }
            }
    } /* while结束*/
    return true; /* 算法执行完毕,返回正确标记 */
}

6.3 多源最短路径算法

两种算法:

  1. 直接将单源最短路径调用N次(稀疏图) V3 + E * V
  2. Floyd算法(稠密图) V3
/* 邻接矩阵存储 - 多源最短路算法 */

bool Floyd( MGraph Graph, WeightType D[][MaxVertexNum], Vertex path[][MaxVertexNum] )
{
    Vertex i, j, k;

    /* 初始化 */
    for ( i=0; i<Graph->Nv; i++ )
        for( j=0; j<Graph->Nv; j++ ) {
            D[i][j] = Graph->G[i][j];
            path[i][j] = -1;
        }

    for( k=0; k<Graph->Nv; k++ )
        for( i=0; i<Graph->Nv; i++ )
            for( j=0; j<Graph->Nv; j++ )
                if( D[i][k] + D[k][j] < D[i][j] ) {
                    D[i][j] = D[i][k] + D[k][j];
                    if ( i==j && D[i][j]<0 ) /* 若发现负值圈 */
                        return false; /* 不能正确解决,返回错误标记 */
                    path[i][j] = k;
                }
    return true; /* 算法执行完毕,返回正确标记 */
}

7. DAG(有向无环图)、拓扑排序

7.1 如何判断图有环

无向图: 深度优先遍历,是否会访问到已遍历的结点,若是,则有环;
有向图:生成树(判断回边)、拓扑排序(判断是否有剩余顶点没有访问)

7.2 拓扑排序 V+E

/* 邻接表存储 - 拓扑排序算法 */

bool TopSort( LGraph Graph, Vertex TopOrder[] )
{ /* 对Graph进行拓扑排序,  TopOrder[]顺序存储排序后的顶点下标 */
    int Indegree[MaxVertexNum], cnt;
    Vertex V;
    PtrToAdjVNode W;
       Queue Q = CreateQueue( Graph->Nv );
 
    /* 初始化Indegree[] */
    for (V=0; V<Graph->Nv; V++)
        Indegree[V] = 0;
        
    /* 遍历图,得到Indegree[] */
    for (V=0; V<Graph->Nv; V++)
        for (W=Graph->G[V].FirstEdge; W; W=W->Next)
            Indegree[W->AdjV]++; /* 对有向边<V, W->AdjV>累计终点的入度 */
            
    /* 将所有入度为0的顶点入列 */
    for (V=0; V<Graph->Nv; V++)
        if ( Indegree[V]==0 )
            AddQ(Q, V);
            
    /* 下面进入拓扑排序 */ 
    cnt = 0; 
    while( !IsEmpty(Q) ){
        V = DeleteQ(Q); /* 弹出一个入度为0的顶点 */
        TopOrder[cnt++] = V; /* 将之存为结果序列的下一个元素 */
        /* 对V的每个邻接点W->AdjV */
        for ( W=Graph->G[V].FirstEdge; W; W=W->Next )
            if ( --Indegree[W->AdjV] == 0 )/* 若删除V使得W->AdjV入度为0 */
                AddQ(Q, W->AdjV); /* 则该顶点入列 */ 
    } /* while结束*/
    
    if ( cnt != Graph->Nv )
        return false; /* 说明图中有回路, 返回不成功标志 */ 
    else
        return true;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值