数据降维 Python 自定义PCA函数(学习笔记)

#自定义函数编制PCA程序
from numpy import *
#通过方差百分比来计算数据降到多少维
def eigValPct(eigVals,percentage):#特征值,方差百分比
    sortArray=sort(eigVals)#从小到大
    sortArray=sortArray[-1::-1]#从大到小
    arraySum=sum(sortArray)
    tempSum=0
    num=0
    for i in sortArray:
        tempSum+=i
        num+=1
        if tempSum>=percentage*arraySum:
            return num
        
def pca(dataMat,percentage=0.9):
    meanVals=mean(dataMat,axis=0)#每一列求平均值,因为协方差的计算需要减去均值
    meanRemoved=dataMat-meanVals
    covMat=cov(meanRemoved,rowvar=0)#计算方法
    eigVals,eigVects=linalg.eig(mat(covMat))#求特征值和特征向量
    k=eigValPct(eigVals,percentage)
    eigValInd=argsort(eigVals)#特征值从小到大排序
    eigValInd=eigValInd[:-(k+1):-1]#排好序的特征值,从后往前取k个
    redEigVects=eigVects[:,eigValInd]#对应的特征向量(主成分)
    lowDDataMat=meanRemoved*redEigVects#将原始数据投影到主成分上得到新的低维数据
    reconMat=(lowDDataMat*redEigVects.T)+meanVals #重构数据
    return lowDDataMat,reconMat

data=pd.read_excel('/data.xls',header=None)
dataMat=mat(data)
pca(dataMat,percentage=0.9)

在这里插入图片描述
在这里插入图片描述

from numpy import *
import pandas as pd
import matplotlib.pyplot as plt
def pca(dataMat,topNfeat=999999):
    meanVals=mean(dataMat,axis=0)#每一列求平均值,因为协方差的计算需要减去均值
    meanRemoved=dataMat-meanVals
    covMat=cov(meanRemoved,rowvar=0)#计算方法
    eigVals,eigVects=linalg.eig(mat(covMat))#求特征值和特征向量
    eigValInd=argsort(eigVals)#特征值从小到大排序
    eigValInd=eigValInd[:-(topNfeat+1):-1]#排好序的特征值,从后往前取k个
    redEigVects=eigVects[:,eigValInd]#对应的特征向量(主成分)
    lowDDataMat=meanRemoved*redEigVects#将原始数据投影到主成分上得到新的低维数据
    reconMat=(lowDDataMat*redEigVects.T)+meanVals #恢复数据
    return lowDDataMat,reconMat

data=pd.read_csv("/testSet.txt",sep='\t',header=None)
dataMat=mat(data)

lowDMat,reconMat=pca(dataMat,1)

fig=plt.figure()
ax=fig.add_subplot(111)
ax.scatter(dataMat[:,0].flatten().A[0],dataMat[:,1].flatten().A[0],marker='^',s=90)
ax.scatter(reconMat[:,0].flatten().A[0],reconMat[:,1].flatten().A[0],marker='o',s=50,c='red')
plt.show()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值