一、scrapy爬虫框架——概念作用和工作流程 & scrapy的入门使用

scrapy的概念和流程

学习目标:
  1. 了解 scrapy的概念
  2. 了解 scrapy框架的作用
  3. 掌握 scrapy框架的运行流程
  4. 掌握 scrapy中每个模块的作用

1. scrapy的概念

Scrapy是一个Python编写的开源网络爬虫框架。它是一个被设计用于爬取网络数据、提取结构性数据的框架。

Scrapy 使用了Twisted['twɪstɪd]异步网络框架,可以加快我们的下载速度。

Scrapy文档地址:http://scrapy-chs.readthedocs.io/zh_CN/1.0/intro/overview.html

2. scrapy框架的作用

少量的代码,就能够快速的抓取

3. scrapy的工作流程

3.1 回顾之前的爬虫流程

3.2 上面的流程可以改写为

3.3 scrapy的流程

其流程可以描述如下:
  1. 爬虫中起始的url构造成request对象–>爬虫中间件–>引擎–>调度器
  2. 调度器把request–>引擎–>下载中间件—>下载器
  3. 下载器发送请求,获取response响应---->下载中间件---->引擎—>爬虫中间件—>爬虫
  4. 爬虫提取url地址,组装成request对象---->爬虫中间件—>引擎—>调度器,重复步骤2
  5. 爬虫提取数据—>引擎—>管道处理和保存数据
注意:
  • 图中中文是为了方便理解后加上去的
  • 图中绿色线条的表示数据的传递
  • 注意图中中间件的位置,决定了其作用
  • 注意其中引擎的位置,所有的模块之前相互独立,只和引擎进行交互

3.4 scrapy的三个内置对象

  • request请求对象:由url method post_data headers等构成
  • response响应对象:由url body status headers等构成
  • item数据对象:本质是个字典

3.5 scrapy中每个模块的具体作用

注意:
  • 爬虫中间件和下载中间件只是运行逻辑的位置不同,作用是重复的:如替换UA等

小结

  1. scrapy的概念:Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架
  2. scrapy框架的运行流程以及数据传递过程:
    1. 爬虫中起始的url构造成request对象–>爬虫中间件–>引擎–>调度器
    2. 调度器把request–>引擎–>下载中间件—>下载器
    3. 下载器发送请求,获取response响应---->下载中间件---->引擎—>爬虫中间件—>爬虫
    4. 爬虫提取url地址,组装成request对象---->爬虫中间件—>引擎—>调度器,重复步骤2
    5. 爬虫提取数据—>引擎—>管道处理和保存数据
  3. scrapy框架的作用:通过少量代码实现快速抓取
  4. 掌握scrapy中每个模块的作用:
    引擎(engine):负责数据和信号在不腰痛模块间的传递
    调度器(scheduler):实现一个队列,存放引擎发过来的request请求对象
    下载器(downloader):发送引擎发过来的request请求,获取响应,并将响应交给引擎
    爬虫(spider):处理引擎发过来的response,提取数据,提取url,并交给引擎
    管道(pipeline):处理引擎传递过来的数据,比如存储
    下载中间件(downloader middleware):可以自定义的下载扩展,比如设置代理ip
    爬虫中间件(spider middleware):可以自定义request请求和进行response过滤,与下载中间件作用重复

二、scrapy的入门使用

学习目标:
  1. 掌握 scrapy的安装
  2. 应用 创建scrapy的项目
  3. 应用 创建scrapy爬虫
  4. 应用 运行scrapy爬虫
  5. 应用 scrapy定位以及提取数据或属性值的方法
  6. 掌握 response响应对象的常用属性

1 安装scrapy

命令:

    sudo apt-get install scrapy

或者:

    pip/pip3 install scrapy

2 scrapy项目开发流程

  1. 创建项目:

        scrapy startproject mySpider
  2. 生成一个爬虫:

        scrapy genspider itcast itcast.cn
  3. 提取数据:

        根据网站结构在spider中实现数据采集相关内容
  4. 保存数据:

        使用pipeline进行数据后续处理和保存

3. 创建项目

通过命令将scrapy项目的的文件生成出来,后续步骤都是在项目文件中进行相关操作,下面以抓取传智师资库来学习scrapy的入门使用:http://www.itcast.cn/channel/teacher.shtml

创建scrapy项目的命令:

    scrapy startproject <项目名字>

示例:

    scrapy startproject myspider

生成的目录和文件结果如下:

4. 创建爬虫

通过命令创建出爬虫文件,爬虫文件为主要的代码作业文件,通常一个网站的爬取动作都会在爬虫文件中进行编写。

命令:

    在项目路径下执行:

    scrapy genspider <爬虫名字> <允许爬取的域名>

爬虫名字: 作为爬虫运行时的参数

允许爬取的域名: 为对于爬虫设置的爬取范围,设置之后用于过滤要爬取的url,如果爬取的url与允许的域不通则被过滤掉。

示例:

    cd myspider
    scrapy genspider itcast itcast.cn

生成的目录和文件结果如下:

5. 完善爬虫

在上一步生成出来的爬虫文件中编写指定网站的数据采集操作,实现数据提取

5.1 在/myspider/myspider/spiders/itcast.py中修改内容如下:

import scrapy

class ItcastSpider(scrapy.Spider):  # 继承scrapy.spider
	# 爬虫名字 
    name = 'itcast' 
    # 允许爬取的范围
    allowed_domains = ['itcast.cn'] 
    # 开始爬取的url地址
    start_urls = ['http://www.itcast.cn/channel/teacher.shtml']
    
    # 数据提取的方法,接受下载中间件传过来的response
    def parse(self, response): 
    	# scrapy的response对象可以直接进行xpath
    	names = response.xpath('//div[@class="tea_con"]//li/div/h3/text()') 
    	print(names)

    	# 获取具体数据文本的方式如下
        # 分组
    	li_list = response.xpath('//div[@class="tea_con"]//li') 
        for li in li_list:
        	# 创建一个数据字典
            item = {}
            # 利用scrapy封装好的xpath选择器定位元素,并通过extract()或extract_first()来获取结果
            item['name'] = li.xpath('.//h3/text()').extract_first() # 老师的名字
            item['level'] = li.xpath('.//h4/text()').extract_first() # 老师的级别
            item['text'] = li.xpath('.//p/text()').extract_first() # 老师的介绍
            print(item)
注意:
  • scrapy.Spider爬虫类中必须有名为parse的解析
  • 如果网站结构层次比较复杂,也可以自定义其他解析函数
  • 在解析函数中提取的url地址如果要发送请求,则必须属于allowed_domains范围内,但是start_urls中的url地址不受这个限制,我们会在后续的课程中学习如何在解析函数中构造发送请求
  • 启动爬虫的时候注意启动的位置,是在项目路径下启动
  • parse()函数中使用yield返回数据,注意:解析函数中的yield能够传递的对象只能是:BaseItem, Request, dict, None

5.2 定位元素以及提取数据、属性值的方法

解析并获取scrapy爬虫中的数据: 利用xpath规则字符串进行定位和提取

  1. response.xpath方法的返回结果是一个类似list的类型,其中包含的是selector对象,操作和列表一样,但是有一些额外的方法
  2. 额外方法extract():返回一个包含有字符串的列表
  3. 额外方法extract_first():返回列表中的第一个字符串,列表为空没有返回None

5.3 response响应对象的常用属性

  • response.url:当前响应的url地址
  • response.request.url:当前响应对应的请求的url地址
  • response.headers:响应头
  • response.requests.headers:当前响应的请求头
  • response.body:响应体,也就是html代码,byte类型
  • response.status:响应状态码

6 保存数据

利用管道pipeline来处理(保存)数据

6.1 在pipelines.py文件中定义对数据的操作

  1. 定义一个管道类
  2. 重写管道类的process_item方法
  3. process_item方法处理完item之后必须返回给引擎
import json

class ItcastPipeline():
    # 爬虫文件中提取数据的方法每yield一次item,就会运行一次
    # 该方法为固定名称函数
    def process_item(self, item, spider):
        print(item)
        return item

6.2 在settings.py配置启用管道

ITEM_PIPELINES = {
    'myspider.pipelines.ItcastPipeline': 400
}

配置项中键为使用的管道类,管道类使用.进行分割,第一个为项目目录,第二个为文件,第三个为定义的管道类。

配置项中值为管道的使用顺序,设置的数值约小越优先执行,该值一般设置为1000以内。

7. 运行scrapy

命令:在项目目录下执行scrapy crawl <爬虫名字>

示例:scrapy crawl itcast


小结

  1. scrapy的安装:pip install scrapy
  2. 创建scrapy的项目: scrapy startproject myspider
  3. 创建scrapy爬虫:在项目目录下执行 scrapy genspider itcast itcast.cn
  4. 运行scrapy爬虫:在项目目录下执行 scrapy crawl itcast
  5. 解析并获取scrapy爬虫中的数据:
    1. response.xpath方法的返回结果是一个类似list的类型,其中包含的是selector对象,操作和列表一样,但是有一些额外的方法
    2. extract() 返回一个包含有字符串的列表
    3. extract_first() 返回列表中的第一个字符串,列表为空没有返回None
  6. scrapy管道的基本使用:
    1. 完善pipelines.py中的process_item函数
    2. 在settings.py中设置开启pipeline
  7. response响应对象的常用属性
    1. response.url:当前响应的url地址
    2. response.request.url:当前响应对应的请求的url地址
    3. response.headers:响应头
    4. response.requests.headers:当前响应的请求头
    5. response.body:响应体,也就是html代码,byte类型
    6. response.status:响应状态码

  • 2
    点赞
  • 9
    收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:深蓝海洋 设计师:CSDN官方博客 返回首页
评论
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值