pandas笔记(6)筛选功能——loc&iloc

本文详细介绍了在Pandas中如何使用loc和iloc进行数据筛选。loc根据行列索引名称筛选,而iloc则依据位置索引进行筛选。两者都支持单行、多行、单列、多列的查找,以及按条件进行筛选。通过实例演示了如何按条件筛选单列或多列数据,以及同时筛选符合条件的行和列。
摘要由CSDN通过智能技术生成

对于数据筛选,可以使用普通索引(loc)、和位置索引(iloc)等方式实现

loc:根据行列索引名称进行筛选

函数格式:df.loc([index],[column])
当不需要对index进行筛选时,需要用冒号“:”来占位。

创建一个DataFrame

import  numpy as np
import  pandas as pd
df = pd.DataFrame(np.arange(16).reshape((4,4)),index = list('abcd'),columns=['A','B','C','D'])
df

# 返回
	A	B	C	D
a	0	1	2	3
b	4	5	6	7
c	8	9	10	11
d	12	13	14	15

  • 单行查找
# 查找a行
df.loc[['a'],]

# 返回

    A	B	C	D
a	0	1
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值