算数运算
- 任意一列加、减、乘、除一个值
创建一个 DataFrame
import numpy as np
import pandas as pd
df = pd.DataFrame(np.arange(16).reshape((4,4)),index = list('abcd'),columns=['A','B','C','D'])
# 返回
A B C D
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15
加法运算:
# A 列每个值加 5
df['A'] = df['A'] + 5
df
# 返回
A B C D
a 5 1 2 3
b 9 5 6 7
c 13 9 10 11
d 17 13 14 15
减法运算:
# A 列每个值减 5
df['A'] = df['A'] - 5
df
# 返回
A B C D
a -5 1 2 3
b -1 5 6 7
c 3 9 10 11
d 7 13 14 15
乘法运算:
# A 列每个值乘 5
df['A'] = df['A'] * 5
df
# 返回
A B C D
a 0 1 2 3
b 20 5 6 7
c 40 9 10 11
d 60 13 14 15
除法运算:
# A 列每个值除 5
df['A'] = df['A'] / 5
df
# 返回
A B C D
a 0.0 1 2 3
b 0.8 5 6 7
c 1.6 9 10 11
d 2.4 13 14 15
- 任意一列加、减、乘、除一个列
两DataFrame相加、减、乘、除
两个DataFrame进行四则运算,需具有相同的行,列索引名。如果索引名不相同,则返回NAN。
'''分别创建一个4*4和3*3的df和df1。由于df1中没有D列,d行,所以df+df1时,这两列值为NAN'''
df = pd.DataFrame(np.arange(16).reshape((4,4)),index = list('abcd'),columns=['A','B','C','D'])
df1= pd.DataFrame(np.arange(9).reshape((3,3)),index = list('abc'),columns=['A','B','C'])
df+df1
# 返回
A B C D
a 0.0 2.0 4.0 NaN
b 7.0 9.0 11.0 NaN
c 14.0 16.0 18.0 NaN
d NaN NaN NaN NaN
当使用add()函数时,可以使用fill_value方法填充单个df中的缺失数据,但当两个df中都为NAN的数据,该方法不会填充。
'''使用add方法,并为缺失值填充为0'''
df.add(df1,fill_value=0)
# 返回
A B C D
a 0.0 2.0 4.0 3.0
b 7.0 9.0 11.0 7.0
c 14.0 16.0 18.0 11.0
d 12.0 13.0 14.0 15.0
- 运算符与pandas操作函数
| 运算符 | 操作函数 | 注释 |
|---|---|---|
| + | add() | 加法 |
| - | sub() | 减法 |
| * | mul() | 乘法 |
| / | div() | 除法 |
| // | floordiv() | 取整 |
| ** | pow() | 乘方 |
| % | mod() | 取余 |
聚合函数
pandas中常用聚合函数如:max(),min(),mean(),sum(),count(),value_counts(),等
以sun()和count()为例:
'''对df中的行求和'''
df.sum(axis=1)
# 返回
a 6
b 22
c 38
d 54
dtype: int64
'''对df中的列计数'''
df.count(axis=0)
# 返回
A 4
B 4
C 4
D 4
dtype: int64
这篇博客介绍了pandas DataFrame的算数运算和聚合函数。包括加、减、乘、除一列或另一DataFrame的操作,并讨论了如何处理缺失数据。还提到了常用的聚合函数,如max、min、mean、sum和count。
799

被折叠的 条评论
为什么被折叠?



