pandas笔记(8)——数据透视表

本文介绍了pandas中数据分组的`groupby()`方法和`aggregate()`方法,展示了如何进行分组聚合运算,并详细讲解了数据透视表`pivot_table()`的使用,包括设置参数进行多维度数据拆分、值计算类型选择、缺失值处理等操作。
摘要由CSDN通过智能技术生成

数据分组

groupby()

在python中可以使用groupby()方法来对数据进行分组
新建一个 df 数据

import pandas as pd
df = pd.DataFrame({
   'id':[1,2,3,4,5,6],'客户':['张三','李四','王五','赵六','唐七','张八'],'学校':['五十七中','二中','二中','五十七中','十四中','二中'],'语文成绩':[78,75,96,86,70,64],'数学成绩':[92,68,75,96,84,76],'英语成绩':[52,98,64,75,32,60]})
df

# 返回
	姓名	学校	年级	语文成绩	数学成绩	英语成绩
0	张三	五十七中	高一	78		92		52
1	李四	二中	高二	75		68		98
2	王五	二中	高二	96		75		64
3	赵六	五十七中	高一	86		96		75
4	唐七	十四中	高一	70		84		32
5	张八	二中	高一	64		76		60
  • 只传入分组列名,将返回一个DataFrameGroupBy对象。
# 按学校分组
df.groupby('学校')

# 返回
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x000001CF62B8E788>
  • 对于groupby对象进行聚合运算,只展示可以进行运算的列。
# 根据学校列进行计数
df.groupby('学校')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值