数据分组
groupby()
在python中可以使用groupby()方法来对数据进行分组
新建一个 df 数据
import pandas as pd
df = pd.DataFrame({
'id':[1,2,3,4,5,6],'客户':['张三','李四','王五','赵六','唐七','张八'],'学校':['五十七中','二中','二中','五十七中','十四中','二中'],'语文成绩':[78,75,96,86,70,64],'数学成绩':[92,68,75,96,84,76],'英语成绩':[52,98,64,75,32,60]})
df
# 返回
姓名 学校 年级 语文成绩 数学成绩 英语成绩
0 张三 五十七中 高一 78 92 52
1 李四 二中 高二 75 68 98
2 王五 二中 高二 96 75 64
3 赵六 五十七中 高一 86 96 75
4 唐七 十四中 高一 70 84 32
5 张八 二中 高一 64 76 60
- 只传入分组列名,将返回一个DataFrameGroupBy对象。
# 按学校分组
df.groupby('学校')
# 返回
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x000001CF62B8E788>
- 对于groupby对象进行聚合运算,只展示可以进行运算的列。
# 根据学校列进行计数
df.groupby('学校')

本文介绍了pandas中数据分组的`groupby()`方法和`aggregate()`方法,展示了如何进行分组聚合运算,并详细讲解了数据透视表`pivot_table()`的使用,包括设置参数进行多维度数据拆分、值计算类型选择、缺失值处理等操作。
最低0.47元/天 解锁文章
704

被折叠的 条评论
为什么被折叠?



