Pandas
千夜道人
在线菜鸟请求指点错误
展开
-
pandas笔记(1)——创建DataFrame
DataFrame介绍与Series不同,DataFrame是由一组数据与行、列索引组成的二维数据结构DataFrame属性:values:表格中值columns:列索引index:行索引shape:形状创建DataFrame创建DataFrame的方法有很多,可以通过列表,元组,字典,外部导入等。1. 列表、元组的传入列表和元组传入方式基本一致。传入一列数据单列表传入:该列表的值会显示成一列,并且行、列索引均是从默认值0开始。import pandas as pddf1原创 2020-08-18 23:29:47 · 602 阅读 · 0 评论 -
pandas笔记(2)——导入excel、csv、txt、sql文件
导入Excel导入xlsx文件可以使用read_excel()基本导入:为避免文件路径里的 “\” 被转义,需要在路径前面加转义符 r。import pandas as pd df = pd.read_excel(r"C:\Users\13513\Desktop\Python.xlsx")df指定导入sheet页当文件有多个sheet页时,可以通过sheet_name 参数来指定具体sheet页。import pandas as pd df = pd.read_excel(r"原创 2020-06-17 00:07:45 · 834 阅读 · 0 评论 -
pandas笔记(3)——DataFrame数据查看,缺失值,异常值,重复值预处理
预览数据前n行Python中预览数据可以使用head()函数,该函数默认展示前5行。# 查看数据前2行df.head(2)获取数据表的行列数量在Python中获取数据表的行列数量,可以通过shape方法注:列表无法使用shape方法# 获取表格的行列df.shape获取数据表的数据类型获取数据表的数据类型,可以使用info()方法。# 查看数据类型df.info()# 返回了所有列的数据类型'''<class 'pandas.core.frame.DataFram原创 2020-06-22 00:01:52 · 13564 阅读 · 0 评论 -
pandas笔记(4)——数据处理
数据修改1. 查找替换用loc进行赋值时,会对原始数据造成修改。用replace()函数替换时,不会对原始数据造成修改。定位替换根据提供的行列索引,对定位值进行替换'''将行列为'a','A'的对应值赋值为1'''df5.loc['a',"A"]=1df5# 返回 A B C Da 1 1 2 3b 4 5 6 7c 8 9 10 11d 12 13 14 15定位条件替换根据提供的条件和索引,对数据进行赋值'''将A列,大于5的值替换成1'''df5.l原创 2020-09-08 20:49:50 · 519 阅读 · 0 评论 -
pandas笔记(5)——DataFrame索引设置
在Python中,dataframe可以使用默认行列索引,也可以自行设置索引。行、列索引 的修改对于DataFrame,如果需要对索引进行修改,可以通过 index 和 columns 参数来进行操作,也可以通过 rename() 方式实现。新建一个DataFrameimport pandas as pddf = pd.DataFrame ([['a','A'],['b','B'],['c','C']],index=[1,2,3],columns=['小写','大写'])df# 返回 小原创 2020-08-26 00:07:00 · 33855 阅读 · 0 评论 -
pandas笔记(6)筛选功能——loc&iloc
loc函数,用于对数据进行筛选工作。loc:根据行列索引名称进行筛选函数格式:df.loc([index],[column])当不需要对index进行筛选时,需要用冒号“:”来占位。创建一个DataFrameimport numpy as npimport pandas as pddf = pd.DataFrame(np.arange(16).reshape((4,4)),index = list('abcd'),columns=['A','B','C','D'])df# 返回 A原创 2020-07-02 00:10:21 · 1557 阅读 · 1 评论 -
pandas笔记(7)DataFrame数学运算
数据运算1. 运算加运算整体增加一个值import numpy as npimport pandas as pddf = pd.DataFrame(np.arange(16).reshape((4,4)),index = list('abcd'),columns=['A','B','C','D'])# 返回 A B C Da 0 1 2 3b 4 5 6 7c 8 9 10 11d 12 13 14 15'''令每个值均加5'''df+5# 返回 A B原创 2020-08-28 00:13:00 · 5241 阅读 · 0 评论 -
pandas笔记(8)——数据透视表
数据分组在python中可以使用groupby()方法来对数据进行分组新建一个 df 数据import pandas as pddf = pd.DataFrame({'id':[1,2,3,4,5,6],'客户':['张三','李四','王五','赵六','唐七','张八'],'学校':['五十七中','二中','二中','五十七中','十四中','二中'],'语文成绩':[78,75,96,86,70,64],'数学成绩':[92,68,75,96,84,76],'英语成绩':[52,98,64,原创 2020-09-14 00:25:16 · 314 阅读 · 0 评论 -
pandas笔记(9)——多表连接
d原创 2020-09-23 00:33:20 · 2058 阅读 · 0 评论 -
pandas笔记(10)——数据导出
导出excel格式:to_excel ( excel_writer, sheet_name=‘Sheet1’, na_rep=’’, float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep=‘inf’, verbose=True, free原创 2020-10-11 22:15:34 · 377 阅读 · 0 评论 -
pandas数据结构——DataFrame
于Series不同,DataFrame是由一组数据与行、列索引组成的二维数据结构原创 2020-06-11 23:58:41 · 873 阅读 · 0 评论 -
pandas数据结构——Series
series数据结构series是一种类似于一维数组的对象,由一组数据和一组对应的索引所组成。.这就是个series0 a1 b2 c3 ddtype: object创建一个series创建series的方法是使用pd.Series(),通过该函数可以传入列表,字典等不同类型的对象。在传入对象后,如果修改被传入的对象,不会影响series的值。传入一个列表:import pandas as pds1=pd.Series(['a','b','c','d'原创 2020-06-06 00:00:14 · 553 阅读 · 0 评论
分享