如何使用ChatGPT得到更满意的结果(7):面向开发者的ChatGPT Prompt Engineering (Expanding) 承接上篇,继续整理关于面向开发者的Prompt Engineering教程笔记。整理的内容基本上英文原文都来自于教程,有需要的朋友可以直接戳https://learn.deeplearning.ai/。这篇笔记主要整理教程中的Expanding部分。
如何使用ChatGPT得到更满意的结果(6):面向开发者的ChatGPT Prompt Engineering (Transforming) 承接上篇,继续整理关于面向开发者的Prompt Engineering教程笔记。整理的内容基本上英文原文都来自于教程,有需要的朋友可以直接戳https://learn.deeplearning.ai/。这篇笔记主要整理教程中的Transforming部分。我们将探索如何使用大型语言模型进行文本转换任务,比如语言翻译、语气调整,格式转换以及拼写/语法检查。
如何使用ChatGPT得到更满意的结果(5):面向开发者的ChatGPT Prompt Engineering (Inferring) 承接上篇,继续整理关于面向开发者的Prompt Engineering教程笔记,整理的内容基本上英文原文都来自于教程,有需要的朋友可以直接戳https://learn.deeplearning.ai/。这篇笔记主要整理教程中Inferring的部分,使用prompt进行推断。
如何使用ChatGPT得到更满意的结果(4):面向开发者的ChatGPT Prompt Engineering (Summarizing) 承接上篇,继续整理关于面向开发者的Prompt Engineering教程笔记,这篇笔记主要整理教程中Summarizing的部分,通过关注特定主题来总结文本。
如何使用ChatGPT得到更满意的结果(3):面向开发者的ChatGPT Prompt Engineering (迭代式Prompt开发) 承接上篇,继续整理关于面向开发者的Prompt Engineering教程笔记,整理的内容基本上都来自于教程,有需要的朋友可以直接戳https://learn.deeplearning.ai/。这篇笔记主要整理教程中lterative Prompt Development的部分。
如何使用ChatGPT得到更满意的结果:Prompt Engineering (2) 这篇笔记以及之后关于这个系列的整理仅作为学习笔记使用,内容基本都来自于教程并加上自己的理解,有需要的朋友可以直接戳https://learn.deeplearning.ai/。这篇笔记主要整理教程中Introduction和Guidelines for Prompting的部分。
【笔记】社交媒体事件的Hawkes Process建模教程(4) 在这篇笔记中,我们将使用社交媒体的数据进行Hawkes process的建模。我们将首先讨论为什么Hawkes process适合来进行推特转发级联的建模,以及如何构建记忆核函数,然后我们将从推特数据中估计模型参数。最后使用带参数的模型来进行转发级联的规模估计(受欢迎程度)。
【笔记】社交媒体事件的Hawkes Process建模教程(3)——参数估计 在这篇笔记中,将继续分享tutorial的第五部分内容,即如何估计Hawkes Process的参数。Tutorial最后的建模应用部分留到下一篇笔记。
【笔记】社交媒体事件的Hawkes Process建模教程(2) 在本篇笔记中,将接着上一篇笔记继续分享tutorial的第三、四部分内容,谈一谈到底什么是Hawkes Process,如何使用Hawkes Process模拟事件(两个方法)。Tutorial最后的如何估计Hawkes Process的参数和建模实例部分留到后面的笔记继续。
【笔记】社交媒体事件的Hawkes Process建模教程(1) 在参考A Tutorial on Hawkes Processes for Events in Social Media这篇文章的情况下,重新对Hawkes Process进行从理论到应用的梳理。包含了从poisson processes,hawkes processes的概念介绍,到使用hawkes process进行建模以及参数估计的全部内容。
成功解决 ImportError: cannot import name ‘Field‘ from ‘torchtext.data‘ 此后再次运行from torchtext.data import Field, Dataset, Example, Iterator,依然会出现报错。尝试from torchtext.legacy.data import Field, Dataset, Example, Iterator,依旧报错。重新使用命令:from torchtext.data import Field, Dataset, Example, Iterator。
【笔记】Hawkes Process:超详细带示例的讲解 Hawkes Process是一种在各个领域都有应用的对事件进行统计建模方法,是一种自我激励的点过程(point process),可以帮助我们了解事件是如何随时间发生的。本文将用简单的语言,结合实际具体的例子帮你更好的理解什么是Hawkes Process以及如何进行简单的模拟。
【笔记】 如何使用ChatGPT得到更满意的结果:Prompt Engineering (1) 基本术语在人工智能的领域中,自然语言处理技术逐渐成为了人们研究的热点之一。而在自然语言处理技术中,Prompt工程师是一个非常重要的职业,他们负责编写AI模型所需要的数据,即Prompt。Prompt是指你输入给AI模型的指令或问题,AI依据这些指令或问题进行学习和生成结果。如何编写优秀的Prompt,是Prompt工程师需要解决的一项核心问题。在了解到 Prompt Engineering的重要性之后,我也开始了初步的学习。今天的笔记主要是针对于一个youtube视频的学习笔记,视频链接贴在最后。
泵引理 Pumping Lemma 泵引理是用于判断一个语言是否是正则语言的定理。如果这种语言可以用 DFA、NFA 或者使用正则表达式来描述,那么这个语言就是正则语言。如果不是正则语言,没有办法画出 DFA 和 NFA 或者写出正则表达式,则可以用pumping lemma来证明。
【笔记】Chunk size, Stripe width, Stripe size概念辨析 在RAID-6的实现过程中,发现Chunk size, Stripe width, Stripe size这几个概念十分容易混淆,且能完全辨析的帖子很少。因此经过在百度大学以及谷歌大学的学习,我整理了一个从我的角度来说能够辨析上述概念的正确的思路。上述概念的辨析主要可以结合RAID0来进行理解,如果在叙述方面存在不妥或者有更好的理解方式,欢迎讨论~参考链接在正式开始进行概念辨析之前,首先来回顾一下什么是RAID。
论文阅读 | Responsible Data Management 在数据驱动的算法系统中纳入对道德和法律法规的考虑已经引起了计算机学界的极大关注,但大部分工作仅限于数据分析的“最后一英里”,并且忽略了系统的设计、开发和使用生命周期和数据生命周期。在文章中,作者强调希望以人作为数据管理的核心,在数据的生命全周期中对数据管理负责。