论文地址:https://ieeexplore.ieee.org/document/9190761
背景
- 肝癌是癌症死亡的主要原因,肝脏位置的确定是诊断的一个准备步骤。
- 关于肝脏分割的研究可以分为两类:(1)手动和半自动分割;(2)自动分词。
首先人工分割很大程度上依赖于专家,费时且容易出错。半自动分割仍然需要人工干预,这会导致偏差和错误。 - 医学图像分割中常用的模型是U-Net和FCN的变体。这些方法通常将分割任务分为两个步骤:定位和分割。
额外的定位步骤将增加模型参数的数量,带来额外的时间消耗。模型分割的精度很大程度上依赖于第一步定位的精度。 - 嵌套的UNet架构:UNet++是最具代表性的基于UNet的分割架构之一。UNet++与UNet的区别在于前者重新设计了编码器和解码器之间不同层次的密集跳过连接,并使用了嵌套卷积块。
UNet++中的每个嵌套卷积块通过多个卷积层提取语义信息,并且块中的每个卷积层通过密集的跳过连接连接,使得连接层可以融合不同层次的语义信息。 - 注意门(Attention Gate,AG):注意机制最早出现在自然语言处理(NLP)中,首次将注意机制引入计算机视觉的是何凯明团队提出的Non-local。为了关注与目标器官相关的位置,我们参考PASSRnet提出的方法,在网络架构中添加一个简单但有效的注意力门。
我们提出了一个嵌套的注意感知分割网络,命名为Attention UNet++,具有增加目标区域权重的能力,同时抑制与分割任务无关的背景区域。

最低0.47元/天 解锁文章
1181

被折叠的 条评论
为什么被折叠?



