二级物流选址求解,求助粒子群或遗传算法代码,其他也可。

标题二级物流选址求解,求助粒子群或遗传算法代码,其他的也可。

二级物流选址求解,求助粒子群或遗传算法代码,其他的也可。

用物流成本作为目标函数,有多个约束条件
问题描述:现有5个一级备选配送中心,选出2个,13个二级备选物流中心选出5个,剩余的点为需求点即11个。
![目标函数]在这里插入图片描述约束条件在这里插入图片描述
想用遗传或粒子群求解,新手代码不会编,求助大神,邮箱2394037961@qq.com

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
以下是基于粒子群算法物流选址代码示例: ```python import numpy as np # 目标函数(适应度函数) def fitness(x, demand, distance): """ :param x: 候选解,即要选址的仓库的位置 :param demand: 各客户的需求量 :param distance: 各仓库与客户之间的距离 :return: 适应度值,即总成本 """ # 计算每个客户与最近的仓库之间的距离 min_distances = np.min(distance[x, :], axis=0) # 计算每个仓库的开销 costs = np.sum(min_distances) # 计算每个仓库的容量 capacities = np.sum(demand[x]) # 若容量不足,则对开销加上一个大数,使得候选解的适应度值很高,不被选中 if capacities < np.sum(demand): costs += 1e9 return costs # 粒子群算法 def PSO(demand, distance, n_particles=50, n_iterations=100, w=0.8, c1=2.0, c2=2.0): """ :param demand: 各客户的需求量 :param distance: 各仓库与客户之间的距离 :param n_particles: 粒子数 :param n_iterations: 迭代次数 :param w: 惯性权重 :param c1: 个体学习因子 :param c2: 社会学习因子 :return: 最优解,最优适应度值 """ # 初始化粒子的位置和速度 particles_x = np.random.randint(0, distance.shape[0], size=(n_particles, demand.shape[0])) particles_v = np.zeros((n_particles, demand.shape[0]), dtype=int) # 记录每个粒子历史上最优的位置和适应度值 particles_pbest_x = particles_x.copy() particles_pbest_f = np.array([fitness(x, demand, distance) for x in particles_x]) # 记录全局最优的位置和适应度值 gbest_x = particles_x[0] gbest_f = fitness(gbest_x, demand, distance) for i in range(n_iterations): # 更新粒子速度和位置 particles_v = w * particles_v + c1 * np.random.rand(n_particles, demand.shape[0]) * (particles_pbest_x - particles_x) \ + c2 * np.random.rand(n_particles, demand.shape[0]) * (gbest_x - particles_x) particles_x = np.clip(particles_x + particles_v, 0, distance.shape[0] - 1) # 更新每个粒子历史上最优的位置和适应度值 particles_f = np.array([fitness(x, demand, distance) for x in particles_x]) particles_pbest_mask = particles_f < particles_pbest_f particles_pbest_x[particles_pbest_mask] = particles_x[particles_pbest_mask] particles_pbest_f[particles_pbest_mask] = particles_f[particles_pbest_mask] # 更新全局最优的位置和适应度值 gbest_mask = particles_pbest_f < gbest_f gbest_x[gbest_mask] = particles_pbest_x[gbest_mask] gbest_f[gbest_mask] = particles_pbest_f[gbest_mask] return gbest_x, gbest_f ``` 其中,`demand` 和 `distance` 分别为各客户的需求量和各仓库与客户之间的距离,可以根据具体情况进行输入。`n_particles` 和 `n_iterations` 分别为粒子数和迭代次数,可以根据实际情况进行调整。`w`、`c1` 和 `c2` 分别为惯性权重、个体学习因子和社会学习因子,也可以根据实际情况进行调整。调用 `PSO()` 函数即可求解最优选址方案和最优成本。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_44854752

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值