大数据学习路线 大数据学习路线文章目录大数据学习路线前言零、学习路线图一、基础部分1.Java2.Mysql3.Linux二、Hadoop生态1.Hadoop基础2.Zookeeper3.HDFS4.YARN5.MapReduce6.Hive7.HBase三、Spark生态1.Scala2.Spark3.Kafka四、Flink生态五、其他相关平台六、项目实战总结前言以下学习路线图为个人学习路线,目前居住二线省会城市,所属金融行业,从事大数据开发工程师岗位。把以下学习路线图分享给大家,欢迎大家留言建议,共同进步。
java.lang.UnsupportedClassVersionError: Unsupported major.minor version 52.0 1 报错问题具体报错日志截图如下:核心日志提示:Exception in thread "main" java.lang.UnsupportedClassVersionError: org/apache/spark/network/sasl/SecretKeyHolder : Unsupported major.minor version 52.0 at java.lang.ClassLoader.defineClass1(Native Method)2 问题定位初步分析该错误是由于jdk版
Spark SQL中列转行(UNPIVOT)的两种方法 行列之间的互相转换是ETL中的常见需求,在Spark SQL中,行转列有内建的PIVOT函数可用,没什么特别之处。而列转行要稍微麻烦点。本文整理了2种可行的列转行方法,供参考。1 测试数据准备本文的环境是Windows 10, Spark 2.4,开发语言是Python。首先构建一点初始测试数据,from pyspark.sql import SparkSessionspark = SparkSession.builder.appName('TestAPP').enableHiveSupport(
HIVE----count(distinct ) over() 无法使用解决办法 在使用hive时发现count(distinct ) over() 报错hive> with da as ( > select 1 a, 'a' b union all > select 1 a, 'a' b union all > select 2 a, 'a' b union all > select 2 a, 'a' b union all > select 2 a, 'a' b union all > se
推荐几本计算机经典书籍 一 语言类1《C Primer Plus》(第6版)中文版 买新版2《C++Primer》中文版3《C++ Primer Plus》 比2更适合零基础4《Java编程思想》5《Java核心技术》卷1卷26《Python核心编程》7《Python编程从入门到实战》8《Go语言实战》 or《Go In Action》二 算法类9《算法导论》 不适合初学者10《算法》第四版 红色三 通信网络11《TCP/IP详解》12《计算机网络 自顶向下》四 linux环
分享两个实用的sql函数 分享两个实用的sql函数1 group_concat()语法:group_concat( [distinct] 要连接的字段 [order by 排序字段 asc/desc ] [separator ‘分隔符’] )功能:将group by产生的同一个分组中的值连接起来,返回一个字符串结果举例:select c_id,GROUP_CONCAT(price) from product group by c_id; 结果:![在这里插入图片描述](https://img-blog.csdnim