Cpdr
码龄6年
关注
提问 私信
  • 博客:154,646
    动态:307
    154,953
    总访问量
  • 214
    原创
  • 30,267
    排名
  • 2,539
    粉丝
  • 152
    铁粉
  • 学习成就

个人简介:confidence,persistence,determination,responsibility

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 毕业院校: 中国矿业大学
  • 加入CSDN时间: 2019-04-07
博客简介:

weixin_44883789的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    6
    当前总分
    2,223
    当月
    45
个人成就
  • 获得971次点赞
  • 内容获得66次评论
  • 获得1,612次收藏
  • 代码片获得13,328次分享
创作历程
  • 45篇
    2024年
  • 172篇
    2023年
成就勋章
TA的专栏
  • Java项目-苍穹外卖
    12篇
  • Java项目-黑马头条
    4篇
  • Java数据结构
    27篇
  • JavaWeb学习
    21篇
  • MySQL学习
    6篇
  • java学习
    83篇
  • 默认专栏
    12篇
  • python代码
    15篇
  • 深度学习理论
    9篇
  • 模型代码解读
    6篇
  • 论文阅读
    6篇
  • 代码函数学习
    1篇
  • 论文阅读_副本
    1篇
兴趣领域 设置
  • Python
    pythonscikit-learnpyqtnumpypandasmatplotlibpipcondaipython
  • Java
    eclipsejavatomcat
  • 人工智能
    深度学习神经网络数据分析
创作活动更多

HarmonyOS开发者社区有奖征文来啦!

用文字记录下您与HarmonyOS的故事。参与活动,还有机会赢奖,快来加入我们吧!

0人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

DilateFormer: Multi-Scale Dilated Transformer for Visual Recognition 中的空洞自注意力机制

本文针对DilateFormer中的空洞自注意力机制原理和代码进行详细介绍,最后通过流程图梳理其实现原理。
原创
发布博客 2024.07.27 ·
1010 阅读 ·
26 点赞 ·
0 评论 ·
28 收藏

SwinUnet详解

文章目录
原创
发布博客 2024.07.06 ·
676 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

SwinTransformer的相对位置索引的原理以及源码分析

如下图,假设输入的feature map高宽都为2,那么首先我们可以构建出每个像素的绝对位置(左下方的矩阵),对于每个像素的绝对位置是使用行号和列号表示的。比如上面的相对位置索引中有(0,−1)和(−1,0)在二维的相对位置索引中明显是代表不同的位置,但如果简单相加都等于-1那不就出问题了吗?因为后面我们会根据相对位置索引去取对应的参数。这样即保证了相对位置关系,而且不会出现上述0 + ( − 1 ) = ( − 1 ) + 0 0+(-1)=(-1)+00+(−1)=(−1)+0的问题了,是不是很神奇。
原创
发布博客 2024.07.06 ·
799 阅读 ·
16 点赞 ·
0 评论 ·
27 收藏

pytorch自适应的调整特征图大小

【代码】pytorch自适应的调整特征图大小。
原创
发布博客 2024.07.01 ·
334 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

python实现:计算代码脚本的运行时间

【代码】python实现:计算脚本运行时间。
原创
发布博客 2024.07.01 ·
499 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

搭建ASPP:多尺度信息提取网络

ASPP(Atrous Spatial Pyramid Pooling),空洞空间卷积池化金字塔。简单理解就是个至尊版池化层,其目的与普通的池化层一致,尽可能地去提取特征。ASPP 的结构如下:如图所示,ASPP 本质上由一个1×1的卷积(最上) + 池化金字塔(中间三个) + ASPP Pooling(最下面三层)组成。而池化金字塔各层的膨胀因子可自定义,从而实现自由的多尺度特征提取。
原创
发布博客 2024.06.28 ·
445 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

信息量、香农熵、交叉熵、KL散度的意义

对于一个事件:信息量的计算公式:I(x)=log2(1p(x))=−log2(p(x))\begin{aligned}&I(x)=log_2(\frac{1}{p(x)})=-log_2(p(x))\end{aligned}​I(x)=log2​(p(x)1​)=−log2​(p(x))​举例:①均匀的硬币②不均匀的硬币:服从某一概率分布的平均信息量(期望),也是一种不确定度的计算方式。香农熵的计算公式:H(p)=∑piIip=∑pilog2(1pi)=−∑pilog2(pi)\begin{align
原创
发布博客 2024.06.19 ·
1093 阅读 ·
24 点赞 ·
0 评论 ·
18 收藏

深度学习中torch.max函数的作用

是 PyTorch 中的一个函数,用于在张量中沿指定维度计算最大值。② 如果提供两个输入张量,则返回两个张量中对应位置的较大值。
原创
发布博客 2024.06.05 ·
519 阅读 ·
6 点赞 ·
0 评论 ·
5 收藏

【python实现】实时监测GPU,空闲时自动执行脚本

【代码】【python实现】实时监测GPU,空闲时自动执行脚本。
原创
发布博客 2024.06.04 ·
546 阅读 ·
3 点赞 ·
1 评论 ·
0 收藏

Bidirectional Copy-Paste for Semi-Supervised Medical Image Segmentation

文章目录1. 模型图2. 模型的训练流程图1. 模型图2. 模型的训练流程图
原创
发布博客 2024.06.03 ·
247 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Rethinking Data Perturbation and Model Stabilization for Semi-supervised Medical Image Segmentation

逐步增加策略(Ramp-Up Policy)指在训练初期逐步增加未标注数据一致性损失的权重,而不是从一开始就给予其很高的权重。这种策略能够帮助模型在初期阶段专注于学习标注数据的可靠信息,同时逐步引入未标注数据的一致性约束。逐步增加策略在半监督学习中起着至关重要的作用,通过逐步引入未标注数据一致性损失,可以帮助模型平稳过渡,逐步学习未标注数据中的信息,从而提高模型的整体性能。合理选择逐步增加函数和动态调整训练策略是实现这一目标的关键。
原创
发布博客 2024.05.28 ·
872 阅读 ·
14 点赞 ·
0 评论 ·
15 收藏

论文中图片的格式要求说明

1、“颜色格式”:彩色图片可以选择“24位色”,一般的黑白图片可以选择“16位灰度”。设置文件名,点击“保存”,会弹出名为“TIFF输出选项”的对话框,再在里面设置即可。点击“文件”->“另存为”,在“文件类型”的下拉菜单中选择“Tag图像文件格式(不同的工具中均有设定图形长宽的命令,首先确保一篇文章中所有的程序出图大小一致。最后输出时需要导出tif格式,分辨率,300*300 DPI。3、“大小”,也可以自定义或者选“源”。300,默认的单位就是“像素/英寸”。2、“分辨率”:选“自定义”,300。
原创
发布博客 2024.04.12 ·
1029 阅读 ·
4 点赞 ·
0 评论 ·
1 收藏

【学习笔记】java项目—苍穹外卖day12

Apache POI 是一个处理Miscrosoft Office各种文件格式的开源项目。简单来说就是,我们可以使用 POI 在 Java 程序中对Miscrosoft Office各种文件进行读写操作。一般情况下,POI 都是用于操作 Excel 文件。银行网银系统导出交易明细各种业务系统导出Excel报表批量导入业务数据。
原创
发布博客 2024.04.07 ·
609 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

【学习笔记】java项目—苍穹外卖day11

Apache ECharts 是一款基于 Javascript 的数据可视化图表库,提供直观,生动,可交互,可个性化定制的数据可视化图表。1). 柱形图2). 饼形图3). 折线图不管是哪种形式的图形,最本质的东西实际上是数据,它其实是对数据的一种可视化展示。
原创
发布博客 2024.04.07 ·
676 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

【学习笔记】java项目—苍穹外卖day10

是Spring框架提供的任务调度工具,可以按照约定的时间自动执行某个代码逻辑。定时任务框架定时自动执行某段Java代码为什么要在Java程序中使用Spring Task?1). 信用卡每月还款提醒2). 银行贷款每月还款提醒3). 火车票售票系统处理未支付订单4). 入职纪念日为用户发送通知只要是需要定时处理的场景都可以使用Spring TaskWebSocket 是基于 TCP 的一种新的网络协议。它实现了浏览器与服务器全双工通信——浏览器和服务器只需要完成一次握手,两者之间就可以创建持久性。
原创
发布博客 2024.04.04 ·
1293 阅读 ·
9 点赞 ·
0 评论 ·
24 收藏

【学习笔记】java项目—苍穹外卖day09

在admin包下创建OrderController。资料来源:b站黑马程序员。接口设计:参见接口文档。接口设计:参见接口文档。接口设计:参见接口文档。接口设计:参见接口文档。接口设计:参见接口文档。接口设计:参见接口文档。接口设计:参见接口文档。接口设计:参见接口文档。接口设计:参见接口文档。接口设计:参见接口文档。接口设计:参见接口文档。接口设计:参见接口文档。
原创
发布博客 2024.04.03 ·
1266 阅读 ·
26 点赞 ·
0 评论 ·
16 收藏

【学习笔记】java项目—苍穹外卖day08

前面的课程已经实现了用户下单,那接下来就是订单支付,就是完成付款功能。支付大家应该都不陌生了,在现实生活中经常购买商品并且使用支付功能来付款,在付款的时候可能使用比较多的就是微信支付和支付宝支付了。在苍穹外卖项目中,选择的就是微信支付这种支付方式。要实现微信支付就需要注册微信支付的一个商户号,这个商户号是必须要有一家企业并且有正规的营业执照。只有具备了这些资质之后,才可以去注册商户号,才能开通支付权限。
原创
发布博客 2024.04.03 ·
1062 阅读 ·
27 点赞 ·
0 评论 ·
22 收藏

【学习笔记】java项目—苍穹外卖day07

Spring Cache 是一个框架,实现了基于注解的缓存功能,只需要简单地加一个注解,就能实现缓存功能。EHCacheCaffeineRedis(常用)</</</</
原创
发布博客 2024.04.02 ·
548 阅读 ·
5 点赞 ·
0 评论 ·
4 收藏

【学习笔记】java项目—苍穹外卖day06

HttpClient 是Apache Jakarta Common 下的子项目,可以用来提供高效的、最新的、功能丰富的支持 HTTP 协议的客户端编程工具包,并且它支持 HTTP 协议最新的版本和建议。发送HTTP请求接收响应数据为什么要在Java程序中发送Http请求?有哪些应用场景呢?当我们在使用扫描支付、查看地图、获取验证码、查看天气等功能时。
原创
发布博客 2024.04.01 ·
1312 阅读 ·
27 点赞 ·
0 评论 ·
12 收藏

学习笔记】java项目—苍穹外卖day05

Redis是一个基于内存的key-value结构数据库。Redis 是互联网技术领域使用最为广泛的存储中间件。key-value结构存储:基于内存存储,读写性能高适合存储热点数据(热点商品、资讯、新闻)企业应用广泛Redis是用C语言开发的一个开源的高性能键值对(key-value)数据库,官方提供的数据是可以达到100000+的QPS(每秒内查询次数)。它存储的value类型比较丰富,也被称为结构化的NoSql数据库。NoSql(Not Only SQL),不仅仅是SQL,泛指。
原创
发布博客 2024.03.30 ·
889 阅读 ·
26 点赞 ·
0 评论 ·
13 收藏
加载更多