xwz小王子
码龄6年
关注
提问 私信
  • 博客:235,361
    235,361
    总访问量
  • 356
    原创
  • 5,218
    排名
  • 2,074
    粉丝
  • 13
    铁粉
  • 学习成就

个人简介:机器人在读博士,研究方向具身智能、强化学习、多模态视听触感知与交互

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2019-04-08
博客简介:

weixin_44887311的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    6
    当前总分
    2,685
    当月
    98
个人成就
  • 获得3,122次点赞
  • 内容获得32次评论
  • 获得3,028次收藏
创作历程
  • 227篇
    2024年
  • 105篇
    2023年
  • 14篇
    2021年
  • 15篇
    2020年
成就勋章
TA的专栏
  • 多模态变形金刚
    99篇
  • 强化学习及自动驾驶
    36篇
  • 深度学习入门基础
    37篇
  • 扩散策略
    17篇
  • LLM机器人
    47篇
  • 具身智能
    86篇
  • 机器人
    60篇
兴趣领域 设置
  • 人工智能
    opencv语音识别计算机视觉目标检测机器学习人工智能caffe深度学习神经网络自然语言处理cnnword2vectensorflow目标跟踪知识图谱rnnlstmdnn生成对抗网络mxnetpytorch机器翻译mlnetpaddlepaddletransformerbertopenvino超分辨率重建视觉检测图像处理nlp数据分析集成学习迁移学习gpt-3AI作画stable diffusionchatgptDALL·E 2DreamFusionAudioLMYOLO文心一言
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

重磅!CoRL 2024顶刊会议 清华大学高阳研究组发布“基于大模型先验知识的强化学习”

不过研究人员也表示,当前RLFP框架仍依赖于人类工程来设计低层次技能和提示,并未真正完成自主生成的技能,此外,当前实验中使用的先验知识主要来自预训练的模型,并未打通网络端,在线获取或更新更加先进的知识。样本和函数复杂是制约强化学习在机器人交互当中的主要影响因素,在样本的获取方面,强化学习通常需要数百万次与环境的交互才能学会解决复杂任务,这在现实世界中是不切实际的。通过结合这些先验知识,RLFP框架能够提升强化学习的样本效率,减少对人类设计的奖励函数的依赖,同时对先验知识的形式具有一定的鲁棒性。
原创
发布博客 2024.11.10 ·
299 阅读 ·
2 点赞 ·
0 评论 ·
9 收藏

CoRL2024 聚焦「视听触感官」协同配合的具身智能操作

本文借鉴人类的基于阶段理解的多感官感知过程,提出了一个由阶段引导的动态多传感器融合框架 MS-Bot,旨在基于由粗到细粒度的任务阶段理解动态地关注具有更高质量的模态数据,从而更好地应对模态时变性的挑战,完成需要多种传感器的精细操纵任务。我们还放松了对阶段边界附近的样本上的相邻阶段分数惩罚,从而实现软约束效果,得到更平滑的阶段预测。如图 4 所示,MS-Bot 准确地预测了任务阶段的变化,并且得益于模型中由粗到细粒度的任务阶段理解,三个模态的注意力分数保持相对稳定,表现出明显的阶段间变化和较小的阶段内调整。
原创
发布博客 2024.11.09 ·
436 阅读 ·
12 点赞 ·
0 评论 ·
8 收藏

Science Robotics 综述揭示演化研究新范式,从机器人复活远古生物!

这种方法不仅能够复现已知的化石足迹,更重要的是,能够理解这些足迹形成的具体机制,为重建早期陆生脊椎动物的运动方式提供了重要线索。3D打印技术的精进让我们能够制作更精细的机器人部件,材料科学的发展为模拟生物组织提供了新的可能,而人工智能的应用则让我们能够更有效地探索形态空间。现有的机器人平台大多只能实现预设的形态变化,而真正的生物演化是一个开放式的、充满创新的过程。在这个循环中,古生物学提供了化石证据,生物学研究现生物种,生物启发机器人帮助验证具体的运动机制,而古生物启发机器人则探索了各种可能的演化路径。
原创
发布博客 2024.11.09 ·
605 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

Nature正刊:西湖大学姜汉卿教授与John A. Rogers-黄永刚-解兆谦联合开发新型的多模态触觉反馈智能穿戴装置

近日,美国西北大学John A. Rogers/黄永刚&西湖大学姜汉卿&大连理工大学解兆谦联合团队提出了一个微型化的机电结构,当与皮肤结合时,能够作为一个弹性储能元件,且支持双稳态,自感知变形模式,实现了压力、剪切力、振动、动态、静态的无线低功耗感知的系统级高度集成,文章于2024年11月6日发表于《Nature》正刊上。一个无线的、皮肤舒适的触觉界面,集成了这些双稳态传感器阵列,作为一个高密度通道,能够呈现来自智能手机的3D扫描和惯性传感器的输入。图2 传感器的机械特性和皮肤在维持双稳定性中的作用。
原创
发布博客 2024.11.08 ·
175 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

Science Robotic 综述论文:通过机器人技术了解自我意识

在这两种情况下,机器人的体现使我们能够设计和测试关于自我本质的假设,关于它的发展、它在行为中的表现以及人类、动物和潜在的机器中自我的多样性。https://www.science.org/doi/10.1126/scirobotics.adn2733Science Robotic 近期发表的综述论文,回顾了解决自我主题(最小自我、扩展自我和自我障碍)的机器人学研究,并强调了通过在人工系统中构建自我组成部分来理解自我的未来方向和开放挑战。
原创
发布博客 2024.11.07 ·
397 阅读 ·
5 点赞 ·
0 评论 ·
9 收藏

IEEE TRO综述论文:抓取合成领域的深度学习方法

这篇工作将主要介绍了深度学习在六自由度抓取合成上的常见方法、深度学习在抓取过程中的支持方法以及数据集设计方法。近期就职于澳大利亚克莱顿市莫纳什大学的Rhys Newbury在TRANSACTIONS ON ROBOTICS期刊杂志上发表的 ”Deep Learning Approaches to Grasp Synthesis: A Review” 综述论文总结了近十年六自由度抓取合成的各类方法,其中最为常用的方法:基于采样的方法、直接回归方法、强化学习方法和范例方法。
原创
发布博客 2024.11.06 ·
697 阅读 ·
17 点赞 ·
0 评论 ·
9 收藏

NeurIPS 2024 | 机器人操纵世界模型来了,成功率超过谷歌RT-1 26.6%

针对该问题,来自中山大学和华为诺亚等单位的研究团队提出了一种全新的原语驱动的路径点感知世界模型,借助 VLMs 作为机器人的大脑,理解任务之间的动作关联性,并通过 “世界模型” 获取对未来动作的表征,从而更好地帮助机器人学习和决策。这样做有几个好处:它使得模型可以更好的学习任务与动作之间的内在关联性,减少其他干扰因素的影响,并更好地捕捉不同任务之间的相似性(例如,拧瓶盖和拧螺丝的动作是相似的,拿杯子和搭积木都有一个抓住物体的过程),从而使得模型可以在多任务数据下学习到可迁移的知识。
原创
发布博客 2024.11.05 ·
801 阅读 ·
7 点赞 ·
0 评论 ·
19 收藏

机器人神经场的全面盘点:导航/自动驾驶/姿态估计应用一览无余

神经场已经成为计算机视觉和机器人技术中3D场景表示的一种变革性方法,能够从姿势的2D数据中准确推断几何、3D语义和动力学。利用可微分渲染,神经场包括连续隐式和显式神经表示,实现了高保真3D重建、多模态传感器数据的集成和新视点的生成。这项调查探讨了它们在机器人技术中的应用,强调了它们在增强感知、规划和控制方面的潜力。它们的紧凑性、内存效率和可微性,以及与基础模型和生成模型的无缝集成,使其成为实时应用的理想选择,提高了机器人的适应性和决策能力。本文基于200多篇论文,对机器人中的神经场进行了全面的回顾,对各个领
原创
发布博客 2024.11.03 ·
948 阅读 ·
21 点赞 ·
0 评论 ·
12 收藏

机器人迈向ChatGPT时刻!清华团队首次发现具身智能Scaling Laws

他们发现了具身智能领域的 “圣杯”——data scaling laws,让机器人实现了真正的零样本泛化,可以无需任何微调就能泛化到全新的场景和物体。视觉编码器必须经过预训练和完整的微调,缺一不可扩大视觉编码器的规模能显著提升性能最令人意外的是:扩大扩散模型的规模却没能带来明显的性能提升,这一现象还值得深入研究。当环境数量足够多时,在单一环境中收集多个不同的操作物体的数据收益极其有限 —— 换句话说,每个环境只需要一个操作物体的数据就够了。Scaling Laws:从 ChatGPT 到机器人的制胜法则。
原创
发布博客 2024.11.01 ·
650 阅读 ·
16 点赞 ·
0 评论 ·
14 收藏

Nature Electronics 用于语音识别的液体声传感器,基于悬浮在载液的钕-铁-硼磁性纳米颗粒

我们的工作受到鲸鱼额头中的脂肪组织的启发,”该论文的通讯作者陈俊(Jun Chen音译)说,“脂肪组织集中并调节用于回声定位的发声,将其声学特性与周围的水体相匹配,从而使声音以最小的能量损失传播。”在他们最近的研究中,陈和他的同事着手开发一种很有前景的新型传感系统,该系统可以模拟鲸鱼额头中脂肪器官的功能。“人工智能在我们的感测系统中发挥着关键作用,特别是支持语音识别,”陈解释说,“得益于液态声学传感器捕获的低噪声信号,该系统在深度学习算法的支持下实现了高识别率。
原创
发布博客 2024.10.31 ·
372 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

Advanced Functional Materials 人工皮肤—基于视触觉传感的三维重建技术:材料、方法和评估

例如,集成涂层和标记阵列的视触觉传感器可以实现纹理映射/重建和力感知,但是标记影响了重建精度(引发小的肿块)。图2 三维重建所需的光照方案2 硬件对3D重建的影响深度相机直接输出深度信息,但是成像距离限制了其在视触觉传感器应用的通用性。基于光流法的三维重建是密集标记物在深度标定的一次有趣的探索。但是,需求突出标记的特异性,让网络对相邻的标记生成高灵敏的边界感。图1 基于视触觉传感三维重建技术概览1 三维重建技术概览视触觉传感的载体是视觉,其三维重建技术与基于机器视觉的三维重建技术有相似之处但也有本质区别。
原创
发布博客 2024.10.30 ·
761 阅读 ·
6 点赞 ·
0 评论 ·
8 收藏

李飞飞团队新突破:低成本高泛化机器人训练法,零样本迁移成功率90%!

基于这一理念,研究团队在实验的收官阶段选择了一个未经预设的真实厨房环境,对ACDC的完整流程和自动化策略学习框架进行了全面的端到端测试。值得注意的是,与数字孪生不同,数字表亲并不追求在所有微小细节上都完美重建给定场景,而是专注于保留更高层次的细节,如物体间的空间关系和语义信息。2、随着测试环境与训练环境差异的增大,数字表亲训练的策略展现出更强的鲁棒性。同时,团队比较了数字表亲和数字孪生在策略训练方面的效果,既在原始环境中进行评估,也测试了在分布外设置中的表现,以验证数字表亲训练策略的稳健性和适应能力。
原创
发布博客 2024.10.29 ·
1146 阅读 ·
9 点赞 ·
0 评论 ·
14 收藏

International Journal of Robotics Research综述分享:深度解析模块化自重构机器人前世今生

为此,香港中文大学(深圳)的研究团队对近40年来的模块化自重构机器人硬件与设计进行了全面调研,提出了一套创新且统一的概念框架,用于深入理解模块化自重构机器人系统的硬件构成。同时,算法的进步大幅促进了硬件技术的发展,使得这一领域迅速成熟,吸引了越来越多的跨学科研究力量加入,推动了相关技术的快速推广和应用。随着技术的进步,分类方法日益复杂,导致了一定程度的混乱。随着技术的不断进步和多样化设计理念的兴起,这类机器人的种类日趋丰富,不同类别通过各自的形态与功能特点进行描述,致使该领域的分类体系日益模糊。
原创
发布博客 2024.10.28 ·
1101 阅读 ·
13 点赞 ·
0 评论 ·
11 收藏

香港大学联合上海AI LAB,提出首个人机交互一体化大模型

随后大模型内部的网络会将该特征分为不同的对象类型(Object)来进行学习,对象类型(Object)是通过预训练的模型获取的,基本能够涵盖人类指令中涉及的机器人交互对象。这种多模态推理在实际任务中的表现,证明了该方法能够有效将视觉感知和语言描述转换为实际的操作行为,如图6中,提示词为“帮助玩具坐在车上”,这里的“坐”和“放”体现了玩具的不同姿态,机器人需要敏锐的区分这里的动词,并实现不同的抓取和放置,从图中来看最终玩具很好的“坐在”车上,而不是被“放在”车上,体现出了RoboCodeX的有益效果。
原创
发布博客 2024.10.25 ·
626 阅读 ·
23 点赞 ·
0 评论 ·
15 收藏

视触觉传感仿真器Tacchi升级版,支持多模式接触运动

在旋转实验中,我们采集了三种探针(不包括本身中心对称的探针,因为旋转前后几乎无差别)的顺时针和逆时针旋转数据,旋转角度从0度到45度,以5度为间隔,共获得60张旋转图像。路径追踪算法追踪光线传播的路径,判断光线和物体的相交情况,可以真实模拟光线在空间中传播时产生的反射、折射、散射、叠加和衰减,可以提供更为真实的光影效果。对于旋转的情形,朴素MPM也存在类似的问题。图5、6:左右两图分别展示了滑移和旋转的仿真结果,每张图片最左侧为采集的真实数据,中间为朴素MPM的仿真结果,右侧为IMPM的仿真结果。
原创
发布博客 2024.10.25 ·
470 阅读 ·
22 点赞 ·
0 评论 ·
15 收藏

Google DeepMind推出DemoStart自主强化学习方法 利用少量示范样本实现复杂操作任务

首先,从基于特征的策略中筛选出成功的轨迹,这些轨迹代表了策略在不同任务参数下的有效行为。为了实现仿真到现实的迁移,DemoStart还引入了一种策略蒸馏技术,将基于仿真特征的策略转换为基于视觉的策略,从而使得训练出的策略能够在真实环境中执行。近日,谷歌DeepMind团队提出了一种名为DemoStart的新型自主强化学习方法,该方法能够在只有少量示范和稀疏奖励的情况下,让装备有机械手臂的机器人在仿真环境中学习复杂的操作技能,并成功实现了零样本的仿真到现实迁移。
原创
发布博客 2024.10.24 ·
922 阅读 ·
20 点赞 ·
0 评论 ·
9 收藏

CoRL 2024 | 波士顿动力自主强化学习助力移动操作持续提升

考虑一个复杂的高维系统,例如在开放空间中学习的具备移动能力的多足机器人,其可探索的空间比受限的桌面环境大得多。本文的方法主要包括以下几个核心组件:(1) 任务相关的自主性,用于收集具有有用学习信号的数据,(2) 通过整合先验知识与学习策略实现高效控制,(3) 结合高级视觉-文本语义与低级深度观测的灵活奖励设定。图 1:持续自主学习:本文使一个具备移动能力的多足机器人通过在现实世界中的练习,学习执行多种任务,如移动椅子(上图,左和右)、扶正簸箕(上图,中间)以及扫地(下图),并且几乎不需要人为干预。
原创
发布博客 2024.10.24 ·
479 阅读 ·
18 点赞 ·
0 评论 ·
11 收藏

字节跳动研究人员提出机器人大模型GR-2,具备世界建模和强大泛化能力

在 7 亿参数规模的验证中,团队看到了令人鼓舞的结果:更大的模型不仅能够处理更多复杂的任务,而且在泛化到未见过的任务和场景时也表现得更加出色。我眼里有活儿更让人惊艳的是,GR-2 还能够与大语言模型相结合,完成复杂的长任务,并与人类进行互动。这种能力,不仅提升了 GR-2 动作预测的准确性,也为机器人的智能决策提供了新的方向。除了能够处理多达 100 余种不同的物体,例如螺丝刀、橡胶玩具、羽毛球,乃至一串葡萄和一根辣椒,GR-2 在未曾见过的场景和物体上也有着出色的表现。GR-2 的旅程,才刚刚开始。
原创
发布博客 2024.10.23 ·
933 阅读 ·
9 点赞 ·
0 评论 ·
20 收藏

NeurIPS 2024 麻省理工学院何恺明教授提出异构预训练Transformer,拟解决多个异构机器人操作技能学习

受到多模态数据学习的启发,HPT使用了特定于本体的分词器(stem)来对齐各种传感器输入,映射为固定数量的token,之后送入Transformer结构的共享主干(trunk),将token映射为共享表示并进行预训练。模拟环境如下图10(a)中,研究人员在闭环模拟中测试了下游任务的模型,并观察到使用HPT-B到HPTXL预训练模型,提到的任务成功率。HPT概念示意图HPT所要做的,就是找到一种共享的策略「语言」,能够对齐来自不同预训练的异质的本体感觉和视觉信息,将自己的信号映射到共享的潜在空间。
原创
发布博客 2024.10.23 ·
598 阅读 ·
16 点赞 ·
0 评论 ·
17 收藏

灵巧手抓取策略迁移:一手训练,多手应用

手无关的状态和动作表示:提出了一种通用的表示方法,这种表示结合了灵巧手间通用的关键点以及侧重刻画手和场景交互的几何特征,分别避免了灵巧手结构和几何差异对策略泛化带来的影响,使其能够在不同的机械手之间转移,无需针对每个机械手单独训练策略模型;图 2. 跨手迁移的抓取策略在不同灵巧手和物体上的泛化效果定量测试方面,该工作首先测试了方法中的主要设计对灵巧手抓取策略性能和泛化性的影响,包括两阶段分离的策略设计,通用的表征设计,基于 transform 的网络结构设计。
原创
发布博客 2024.10.22 ·
620 阅读 ·
25 点赞 ·
0 评论 ·
9 收藏
加载更多