cs231n(5)

第五讲:卷积神经网络
回顾:多层感知机、非线性激活函数、梯度下降与反向传播
这节课介绍计算机视觉领域大名鼎鼎的卷积神经网络,从卷积、padding、池化、全连接等基础操作,到局部连接、权值共享、下采样三大特性,并辅以大量的动图,以及LeNet5手写数字识别、MNIST手写数字识别、Cifar-10图像分类等几个交互式可视化网页,深入理解卷积神经网络基本原理。
在后续课程中,我们会介绍各种经典的卷积神经网络架构,并解决图像分类、物体检测、语义分割等问题。
各种卷积可视化:https://ezyang.github.io/convolution-visualizer/index.html
多通道卷积可视化:https://thomelane.github.io/convolutions/2DConvRGB.html
ConvNetjs-cifar10卷积神经网络可视化:https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
LeNet5手写数字识别卷积神经网络可视化:https://www.cs.ryerson.ca/~aharley/vis/conv/
keras.js-MNIST手写数字识别卷积神经网络可视化:https://transcranial.github.io/keras-js/#/mnist-cnn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值