多模态变形金刚
文章平均质量分 80
多模态可是当下最火的热词,精彩内容不容错过
xwz小王子
机器人在读博士,研究方向具身智能、强化学习、多模态视听触感知与交互
展开
-
重磅!CoRL 2024顶刊会议 清华大学高阳研究组发布“基于大模型先验知识的强化学习”
不过研究人员也表示,当前RLFP框架仍依赖于人类工程来设计低层次技能和提示,并未真正完成自主生成的技能,此外,当前实验中使用的先验知识主要来自预训练的模型,并未打通网络端,在线获取或更新更加先进的知识。样本和函数复杂是制约强化学习在机器人交互当中的主要影响因素,在样本的获取方面,强化学习通常需要数百万次与环境的交互才能学会解决复杂任务,这在现实世界中是不切实际的。通过结合这些先验知识,RLFP框架能够提升强化学习的样本效率,减少对人类设计的奖励函数的依赖,同时对先验知识的形式具有一定的鲁棒性。原创 2024-11-10 15:06:51 · 299 阅读 · 0 评论 -
CoRL2024 聚焦「视听触感官」协同配合的具身智能操作
本文借鉴人类的基于阶段理解的多感官感知过程,提出了一个由阶段引导的动态多传感器融合框架 MS-Bot,旨在基于由粗到细粒度的任务阶段理解动态地关注具有更高质量的模态数据,从而更好地应对模态时变性的挑战,完成需要多种传感器的精细操纵任务。我们还放松了对阶段边界附近的样本上的相邻阶段分数惩罚,从而实现软约束效果,得到更平滑的阶段预测。如图 4 所示,MS-Bot 准确地预测了任务阶段的变化,并且得益于模型中由粗到细粒度的任务阶段理解,三个模态的注意力分数保持相对稳定,表现出明显的阶段间变化和较小的阶段内调整。原创 2024-11-09 10:16:42 · 437 阅读 · 0 评论 -
Science Robotics 综述揭示演化研究新范式,从机器人复活远古生物!
这种方法不仅能够复现已知的化石足迹,更重要的是,能够理解这些足迹形成的具体机制,为重建早期陆生脊椎动物的运动方式提供了重要线索。3D打印技术的精进让我们能够制作更精细的机器人部件,材料科学的发展为模拟生物组织提供了新的可能,而人工智能的应用则让我们能够更有效地探索形态空间。现有的机器人平台大多只能实现预设的形态变化,而真正的生物演化是一个开放式的、充满创新的过程。在这个循环中,古生物学提供了化石证据,生物学研究现生物种,生物启发机器人帮助验证具体的运动机制,而古生物启发机器人则探索了各种可能的演化路径。原创 2024-11-09 10:13:37 · 605 阅读 · 0 评论 -
Science Robotic 综述论文:通过机器人技术了解自我意识
在这两种情况下,机器人的体现使我们能够设计和测试关于自我本质的假设,关于它的发展、它在行为中的表现以及人类、动物和潜在的机器中自我的多样性。https://www.science.org/doi/10.1126/scirobotics.adn2733Science Robotic 近期发表的综述论文,回顾了解决自我主题(最小自我、扩展自我和自我障碍)的机器人学研究,并强调了通过在人工系统中构建自我组成部分来理解自我的未来方向和开放挑战。原创 2024-11-07 09:43:05 · 397 阅读 · 0 评论 -
IEEE TRO综述论文:抓取合成领域的深度学习方法
这篇工作将主要介绍了深度学习在六自由度抓取合成上的常见方法、深度学习在抓取过程中的支持方法以及数据集设计方法。近期就职于澳大利亚克莱顿市莫纳什大学的Rhys Newbury在TRANSACTIONS ON ROBOTICS期刊杂志上发表的 ”Deep Learning Approaches to Grasp Synthesis: A Review” 综述论文总结了近十年六自由度抓取合成的各类方法,其中最为常用的方法:基于采样的方法、直接回归方法、强化学习方法和范例方法。原创 2024-11-06 10:22:42 · 697 阅读 · 0 评论 -
NeurIPS 2024 | 机器人操纵世界模型来了,成功率超过谷歌RT-1 26.6%
针对该问题,来自中山大学和华为诺亚等单位的研究团队提出了一种全新的原语驱动的路径点感知世界模型,借助 VLMs 作为机器人的大脑,理解任务之间的动作关联性,并通过 “世界模型” 获取对未来动作的表征,从而更好地帮助机器人学习和决策。这样做有几个好处:它使得模型可以更好的学习任务与动作之间的内在关联性,减少其他干扰因素的影响,并更好地捕捉不同任务之间的相似性(例如,拧瓶盖和拧螺丝的动作是相似的,拿杯子和搭积木都有一个抓住物体的过程),从而使得模型可以在多任务数据下学习到可迁移的知识。原创 2024-11-05 20:56:08 · 801 阅读 · 0 评论 -
机器人神经场的全面盘点:导航/自动驾驶/姿态估计应用一览无余
神经场已经成为计算机视觉和机器人技术中3D场景表示的一种变革性方法,能够从姿势的2D数据中准确推断几何、3D语义和动力学。利用可微分渲染,神经场包括连续隐式和显式神经表示,实现了高保真3D重建、多模态传感器数据的集成和新视点的生成。这项调查探讨了它们在机器人技术中的应用,强调了它们在增强感知、规划和控制方面的潜力。它们的紧凑性、内存效率和可微性,以及与基础模型和生成模型的无缝集成,使其成为实时应用的理想选择,提高了机器人的适应性和决策能力。本文基于200多篇论文,对机器人中的神经场进行了全面的回顾,对各个领原创 2024-11-03 19:51:31 · 948 阅读 · 0 评论 -
Advanced Functional Materials 人工皮肤—基于视触觉传感的三维重建技术:材料、方法和评估
例如,集成涂层和标记阵列的视触觉传感器可以实现纹理映射/重建和力感知,但是标记影响了重建精度(引发小的肿块)。图2 三维重建所需的光照方案2 硬件对3D重建的影响深度相机直接输出深度信息,但是成像距离限制了其在视触觉传感器应用的通用性。基于光流法的三维重建是密集标记物在深度标定的一次有趣的探索。但是,需求突出标记的特异性,让网络对相邻的标记生成高灵敏的边界感。图1 基于视触觉传感三维重建技术概览1 三维重建技术概览视触觉传感的载体是视觉,其三维重建技术与基于机器视觉的三维重建技术有相似之处但也有本质区别。原创 2024-10-30 08:51:23 · 761 阅读 · 0 评论 -
香港大学联合上海AI LAB,提出首个人机交互一体化大模型
随后大模型内部的网络会将该特征分为不同的对象类型(Object)来进行学习,对象类型(Object)是通过预训练的模型获取的,基本能够涵盖人类指令中涉及的机器人交互对象。这种多模态推理在实际任务中的表现,证明了该方法能够有效将视觉感知和语言描述转换为实际的操作行为,如图6中,提示词为“帮助玩具坐在车上”,这里的“坐”和“放”体现了玩具的不同姿态,机器人需要敏锐的区分这里的动词,并实现不同的抓取和放置,从图中来看最终玩具很好的“坐在”车上,而不是被“放在”车上,体现出了RoboCodeX的有益效果。原创 2024-10-25 09:44:03 · 626 阅读 · 0 评论 -
视触觉传感仿真器Tacchi升级版,支持多模式接触运动
在旋转实验中,我们采集了三种探针(不包括本身中心对称的探针,因为旋转前后几乎无差别)的顺时针和逆时针旋转数据,旋转角度从0度到45度,以5度为间隔,共获得60张旋转图像。路径追踪算法追踪光线传播的路径,判断光线和物体的相交情况,可以真实模拟光线在空间中传播时产生的反射、折射、散射、叠加和衰减,可以提供更为真实的光影效果。对于旋转的情形,朴素MPM也存在类似的问题。图5、6:左右两图分别展示了滑移和旋转的仿真结果,每张图片最左侧为采集的真实数据,中间为朴素MPM的仿真结果,右侧为IMPM的仿真结果。原创 2024-10-25 09:29:11 · 470 阅读 · 0 评论 -
Google DeepMind推出DemoStart自主强化学习方法 利用少量示范样本实现复杂操作任务
首先,从基于特征的策略中筛选出成功的轨迹,这些轨迹代表了策略在不同任务参数下的有效行为。为了实现仿真到现实的迁移,DemoStart还引入了一种策略蒸馏技术,将基于仿真特征的策略转换为基于视觉的策略,从而使得训练出的策略能够在真实环境中执行。近日,谷歌DeepMind团队提出了一种名为DemoStart的新型自主强化学习方法,该方法能够在只有少量示范和稀疏奖励的情况下,让装备有机械手臂的机器人在仿真环境中学习复杂的操作技能,并成功实现了零样本的仿真到现实迁移。原创 2024-10-24 09:59:59 · 922 阅读 · 0 评论 -
NeurIPS 2024 麻省理工学院何恺明教授提出异构预训练Transformer,拟解决多个异构机器人操作技能学习
受到多模态数据学习的启发,HPT使用了特定于本体的分词器(stem)来对齐各种传感器输入,映射为固定数量的token,之后送入Transformer结构的共享主干(trunk),将token映射为共享表示并进行预训练。模拟环境如下图10(a)中,研究人员在闭环模拟中测试了下游任务的模型,并观察到使用HPT-B到HPTXL预训练模型,提到的任务成功率。HPT概念示意图HPT所要做的,就是找到一种共享的策略「语言」,能够对齐来自不同预训练的异质的本体感觉和视觉信息,将自己的信号映射到共享的潜在空间。原创 2024-10-23 20:13:03 · 598 阅读 · 0 评论 -
灵巧手抓取策略迁移:一手训练,多手应用
手无关的状态和动作表示:提出了一种通用的表示方法,这种表示结合了灵巧手间通用的关键点以及侧重刻画手和场景交互的几何特征,分别避免了灵巧手结构和几何差异对策略泛化带来的影响,使其能够在不同的机械手之间转移,无需针对每个机械手单独训练策略模型;图 2. 跨手迁移的抓取策略在不同灵巧手和物体上的泛化效果定量测试方面,该工作首先测试了方法中的主要设计对灵巧手抓取策略性能和泛化性的影响,包括两阶段分离的策略设计,通用的表征设计,基于 transform 的网络结构设计。原创 2024-10-22 09:49:57 · 620 阅读 · 0 评论 -
ICRA@40 周年大会:多指手既可抓取,又可以变成多足机器人
因为我们当然知道——这就是(我们大多数人)的构建方式,这就是我们因此优化周围世界的思维方式。但机器人的一大优点是它们不必受到我们的限制,本周在鹿特丹的 ICRA@40 上,我们看到了一个新颖的新事物:一种可以脱离手臂的机械手,然后四处爬行以抓住原本无法触及的物体,由瑞士 EPFL 的机器人专家设计。但机器人的一大优点是它们不必受到我们的限制,本周在鹿特丹的 ICRA@40 上,我们看到了一个新颖的新事物:一种可以脱离手臂的机械手,然后四处爬行以抓住原本无法触及的物体,由瑞士 EPFL 的机器人专家设计。原创 2024-10-21 10:56:50 · 421 阅读 · 0 评论 -
PRCV 2024 - Day2
主会场 —— 主旨报告报告题目:大模型背景下的数字内容取证讲者:谭铁牛(中科院自动化所,中国科学院院士)图1 大模型背景下的数字内容取证在数字化时代,随着人工智能技术的迅猛发展,尤其是深度学习的广泛应用,数字内容的生成和编辑变得更加便捷高效。然而,技术的双刃剑特性也带来了新的挑战,特别是在数字内容取证领域。生成式大模型如今能够生成逼真的文本、图像、音频和视频,可能被用于制造虚假信息、深度伪造等恶意目的,严重威胁社会秩序和信息安全。在这种背景下,取证工作变得日益复杂,需要更先进的技术手段应对伪造技术的原创 2024-10-20 08:50:25 · 930 阅读 · 0 评论 -
PRCV 2024 - Day 1
周奕毅教授分享的主题是“机遇与挑战—多模态语言大模型研究进展介绍”,为尚未了解多模态语言大模型的参会者简要介绍了它的发展历程、主要模型架构、国内外研究差距、应用场景、存在的不足之处和未来的研究方向和发展趋势,帮助我们推开了认识多模态大模型的大门。郭龙腾老师分享的主题是“多模态预训练模型的构建与应用”,从引入多模态模型预训练的需求开始,层层深入,逐步介绍多模态预训练模型的构建方法和实施过程,再引申到多模态的理解与生成,并分析了多模态预训练模型所面临的技术挑战与未来展望。原创 2024-10-19 14:03:09 · 727 阅读 · 0 评论 -
基于光度学的小型视触觉传感器的开发
通过对传感器结构的优化,研究者提出了一种紧凑的传感器设计,使其厚度仅为14毫米,长度约为44毫米,适用于狭小环境中的抓取操作。通过与提出的传感器设计进行比较,结果表明,不使用镜子的设计由于相机视角的扭曲,图像存在明显的透视变形,影响了接触表面的深度重建。该研究提出的小型光度视觉触觉传感器成功缩小了传感器尺寸,解决了传统视触觉传感器体积大的问题,同时保持了良好的表面感知性能。研究结果还显示,荧光颜料涂层提供了稳定且一致的光照效果,并且避免了LED照明引发的过热问题,延长了传感器的使用寿命。原创 2024-10-18 01:15:42 · 963 阅读 · 0 评论 -
Advanced Intelligent Systems 综述论文:视触觉传感器的力测量技术
首先,介绍标记型VTS的工作原理,包括单层标记、双层标记、颜色编码和光流。文章首先介绍了单层标记、双层标记、彩色编码和光流等标记型VTS的工作原理,深入讨论了标记类型与力量测量类别之间的关系。近期,方斌教授团队发表的Advanced Intelligent Systems 综述论文,深入探讨了标记属性与力量测量精度的关系,提出了优化标记设计的潜在解决方案。讨论了基于视觉的触觉传感器力量测量技术,深入探讨了力量感应原理、标记类型、测量方法及应用场景等,为VTS的力量测量提供了全面而深入的技术细节。原创 2024-10-17 09:05:51 · 862 阅读 · 0 评论 -
Chemical Engineering Journal 面向空间舱外智能操作的受皮肤启发的多模态触觉传感器
结合BMLTS和深度学习的仿生智能感知系统(BIPS)可以实现基于摩擦电的对Al、POM、玻璃、纸张、纤维等5种材料的实时感知,实现对数字、字母、汉字书写和记录的智能识别。但是对于宇航员来说,但对于在太空或月球上的宇航员来说,他们佩戴的太空手套通常是由非常厚的多层结构组成来提高密封性,以确保宇航员的安全,但却阻碍了有效的触觉反馈,特别是指尖的触觉反馈,导致手的灵巧操作受到限制,严重阻碍了宇航员在舱外活动的灵活性。整个过程分为接触前(①)、开始接触(②)、接触后(③)、开始分离(④)、接触后(⑤)五个步骤。原创 2024-10-16 10:12:44 · 775 阅读 · 0 评论 -
Science Robotics 通过新材料打造FiBa软机器人 可实现四种形态进化
近几年由于材料科学的进步,软机器人相关技术近几年研究成果显著,与传统的刚性机器人相比,软机器人的设计灵感来源于自然界中的生物系统,如蠕虫、章鱼、壁虎和青蛙等。通过轻质材料的选择和模块化设计的应用,FiBa执行器拥有了轻量化和多功能特性,这一设计不仅解决了传统软机器人的重量问题,还在实际场景中拥有极高的泛化性。为了验证FiBa执行器的性能和多功能性,研究团队成功展示了四种不受束缚的仿生运动模式,分别为受海龟启发的爬行、受尺蠖启发的攀爬、受蝙蝠启发的栖息和受瓢虫启发的飞行。原创 2024-10-14 15:01:48 · 1057 阅读 · 0 评论 -
CoRL 2024 机器人抓取学习 GraspSplats:使用 3D 特征展开进行高效操作
机器人对物体部分进行高效且零样本抓取的能力对于实际应用至关重要,并且随着视觉语言模型(VLMs)的最新进展而变得越来越普遍。为了弥补支持这种能力的表示中的二维到三维差距,现有方法依赖于通过可微渲染或基于点的投影方法的神经场(NeRFs)。然而,我们证明NeRFs由于其隐式性而不适用于场景变化,而基于点的方法在没有基于渲染的优化的情况下,对于部件定位不准确。为了解决这些问题,我们提出了GraspSplats。通过使用深度监督和一种新颖的参考特征计算方法,GraspSplats在不到60秒的时间内生成高质量的场原创 2024-10-13 14:17:11 · 578 阅读 · 0 评论 -
Science Robotics封面论文:假肢手的交互控制新思路,磁性植入让截肢者重获灵巧抓握功能
随着技术的不断完善,我们有理由期待在不久的将来,这种基于磁体植入的假肢控制系统能够为更多患者带来福音,帮助他们重获失去的功能,提高生活质量。其次,磁体的尺寸比现有的植入式肌电传感器更小,可以植入更多肌肉部位,理论上能实现更多自由度的控制。再者,磁体位移提供了肌肉长度和速度的直接测量,有望更准确地关联肌肉激活与肌力,从而实现更精细的控制。与传统依赖神经和肌肉电信号的方法不同,该技术利用肌肉收缩引起的物理位移来解读用户意图,为开发更加直观、精准的人机接口提供了新的可能性。此外,长期临床试验也是必不可少的。原创 2024-10-10 08:51:05 · 713 阅读 · 0 评论 -
Science Advances 具有高灵敏度远程感知功能的多感受器皮肤
图6:展示了多感受器皮肤在远程感知和触觉感知中的应用。读后感这篇论文提出了一种基于多感受器皮肤的新型远程感知和触觉感知系统,结合了纳米材料的结构性掺杂和深度学习算法,突破了传统传感器在感知距离、灵敏度和功能上的限制。图5F通过对比不同通道的输入,展示了识别精度随着通道数量的增加而提升,图5G则展示了四通道输入下的混淆矩阵,表明系统最终实现了99.56%的分类准确率。图1A介绍了人类大脑功能区域的分布,图1B展示了鸭嘴兽通过双重感受器(机械感受器和电感受器)感知环境的原理,作为系统设计的仿生灵感。原创 2024-10-09 10:23:39 · 772 阅读 · 0 评论 -
TPAMI 2024 多模态学习最新综述:普林斯顿大学、武汉大学等从数据视角解读多模态学习
在介绍了涉及其他模态的视觉和数据的各种判别性和生成性多模态应用之后,作者从技术设计和与数据属性的联系的角度重新审视和总结了现有的工作。此外,文中从表示学习和下游应用层面研究了多模态学习的现有文献,并根据它们与数据性质的技术联系进行了额外的比较,例如图像对象和文本描述之间的语义一致性以及节奏视频舞蹈动作和音乐节拍之间的对应关系。表2给出了生成任务中的评价指标。基于 GAN 的模型 与 VAE 类似,基于 GAN 的模型的训练不需要外部注释,只需要真实的原始数据,因此经常用于无监督或弱监督的环境中。原创 2024-10-06 19:38:48 · 1608 阅读 · 2 评论 -
斯坦福团队用模仿学习赋予机器人新技能:系鞋带
研究人员给嵌入加了个位置嵌入,然后喂了一个8500万的Transformer编码器,之后用双向注意力进行解码,就得到了观察结果的潜在嵌入。目前研究团队已经开源了Aloha 2的所有硬件设计,并提供详细的教程和模拟模型,以便于研究人员和开发者进行大规模的双手操作研究。训练时,研究人员基于JAX框架,在64个TPUv5e上并行训练,批量大小256,总共进行了200万步的训练。除了系鞋带,视频中的Aloha 2机器人还会挂衣服、拧齿轮、收拾厨房,甚至是给“同事”换不同用途的配件。原创 2024-10-03 13:45:14 · 490 阅读 · 0 评论 -
Nature Machine Intelligence 基于强化学习的扑翼无人机机翼应变飞行控制
目前工作包括五个关键实验:用于提供状态信息的机翼应变传感器系统初步验证,在风变化的单自由度运动环境中的控制技术,在重力姿态调整的两自由度运动环境中的控制技术,在有风条件下的位置控制测试,以及在无风条件下,仅使用机翼应变传感器的精确飞行路径操纵的演示。在强化学习驱动的飞行控制器帮助下,已经成功地演示了仅使用机翼应变传感器,在各种环境中控制扑翼无人机。研发了可应用于扑翼无人机的“感知飞行”控制技术,利用施加在扑翼无人机机翼上的气动力,推导重要的飞行数据,如姿态和气流,而无需加速计和陀螺传感器。原创 2024-10-01 20:45:54 · 558 阅读 · 0 评论 -
Soft Robotics 多模式抓取能力的变刚度软体手
材料方面采用柔性材料,结构上加入悬臂梁,并将其末端都集中在手掌的一个区域,只要将一个物体压入手掌,就可以实现手掌的被动弯曲,以此简轻机器人手的重量并保持手掌的形状合适。在此之外,由于LED和有机硅之间产生的空气界面而导致的不可预测的光热点和凝胶弹性体表面缺乏混合光梯度的问题,采用了易于使用和封装在硅胶中的商业柔性1.7 mm直径LED灯丝(Adacarp),通过测试和比较,最终选用蓝色LED,将其集成到ROMEO手指和新型手掌中,并使用半透明的有机硅涂料。下图为硅酮浇注前将铝漆混合液空刷到模具上的步骤。原创 2024-09-26 09:06:55 · 681 阅读 · 0 评论 -
普渡大学和麻省理工学院合作开发集成视触觉指尖传感器的5自由度抓手
虽然机器人已经开始在现代制造业、医疗、服务业等领域进行渗透,但对于机器人尤其是机械臂的操作能力,仍然有很大的提升空间,传统多指机器人手虽然能够实现复杂的操作任务,但其高度冗余性也带来了不必要的复杂性。近日来自普渡大学和麻省理工学院的研究团队开发了一款配备触觉传感器的5自由度(DoF)触觉双指抓手,该设计能够简化的机械结构和增强的触觉感知能力,实现更高效、更精确的在手操作。例如,在抓取信用卡时,机器人可以通过触觉图像准确判断信用卡的姿态和位置信息,并据此调整抓手的操作策略以实现精确插入。原创 2024-09-25 09:01:16 · 843 阅读 · 0 评论 -
Nature子刊 | 通过眼动控制机器人的脑机接口
人机交互是一个快速发展的领域,机器人在我们的日常生活中发挥着越来越积极的作用。病人护理是机器人越来越多出现的领域之一,尤其是对残疾人来说。患有神经退行性疾病的人可能不会有意识或自愿地进行除眼睛或眼睑以外的运动。在这种情况下,脑机接口(BCI)系统提供了与外部世界通信或交互的另一种方式。为了改善残障人士的生活,本文提出了一种新的脑机接口,用于控制辅助机器人。原创 2024-09-24 09:44:52 · 771 阅读 · 0 评论 -
Science Robotics 封面论文:受液滴表面张力启发的可变刚度变形轮
在液滴中,随着最外层液体分子的内聚力的增加,将液体分子向内拉的净力也增加。近期Science Robotics 发表的封面论文,Lee等人开发了一种刚度可调的轮子,可以实时改变,在平坦的地面上呈现出坚硬的圆形,在大障碍物上呈现出柔软的、可变形的形状。论文通过实验验证了所提出轮子设计的有效性,并展示了其在不同应用场景中的潜力,同时也指出了未来研究的方向,以进一步提高这种轮子的性能和应用范围。智能链结构:轮子的智能链结构由一系列链块组成,通过改变牵引线的张力,可以改变这些链块的紧密程度,从而改变轮子的刚度。原创 2024-09-20 13:37:55 · 575 阅读 · 0 评论 -
Science Robotics 首尔国立大学研究团队推出BBEX外骨骼,实现多维力量支持!
使用BBEX后,在对称举重任务中,L5/S1关节的峰值压缩力在初始阶段降低了15.6%,中期降低了15.4%,末期降低了13.2%;具体数据显示,在对称举重任务中,使用BBEX与未使用时,LE的MDF分别降低了22.70%和27.56%,而在不对称举重任务中,MDF的降低分别为18.10%和30.56%。在举重时,这种机制可以提供有效的多维支持,减轻背部肌肉的力量需求,还能降低各种脊柱关节上的关节压力,特别是在那些背部肌肉力主要产生关节剪切力的情况下,辅助力能够有效减少这些力量的影响。原创 2024-09-08 10:19:50 · 1139 阅读 · 0 评论 -
华南师范大学研究团队提出基于单一视触觉传感器的多模态触觉感知策略
这种策略不再需要为不同模式的触觉信息设计不同的光学结构,而是通过简单的反射层结合神经网络来同时感知多种触觉信息,从而降低了触觉系统的复杂性。然而,目前主流的视触觉传感系统通常采用孤立的光学设计策略和不同的数据处理方法以获取不同模式的触觉信息,这在系统集成方面引入了一定的局限性。基于视觉的触觉传感器通过捕捉接触引发的表面光学变化,实现了对物体触摸行为的精准检测。在系统的优化中,研究团队提出了一种基于成像分辨率的触觉分辨率测量方法用于优化对比不同视触觉传感器设计,最终实现了与人类触觉类似的微米级空间分辨率。原创 2024-09-04 15:05:56 · 657 阅读 · 0 评论 -
DeepMind 机器人学习打乒乓球,朝着「专业运动员水平的速度和性能」发展
且由于内置的碰撞避免协议,机器人在处理非常低的球时存在问题,这些协议虽然对保护机器人的拍子至关重要,但也限制了机器人处理靠近桌面的球的能力;在泛化能力方面,机器人的表现依旧有限。虽然机器人在与最先进玩家的所有比赛中都“惨败”,但它赢得了与初学者的100%比赛和与中级玩家的55%比赛,充分展示了其拥有的乒乓球业余选手技能。这几天全球各界最火热的话题非奥运会莫属,而其中乒乓球比赛更是引起了互联网的讨论热潮,无论是欢呼也好、争议也罢,在现实世界人类的乒乓球大赛风生水起的同时,AI已经偷偷在乒乓球上“出师”了——原创 2024-09-01 08:51:25 · 1145 阅读 · 0 评论 -
IEEE TCDS论文分享:脑机接口融合增强现实技术的人机交互操作—“所见所想即所得”
每个刺激目标都以一个固定的频率闪烁,每个刺激目标的闪烁频率是不同的。此外,将物体的视觉信息与刺激目标相结合,建立了一个新的刺激界面,该刺激界面可以自动更新刺激目标与物体之间的映射关系,以适应工作空间中物体的变化。提出的基于AR的SSVEP-BCI系统使用户更自然地选择意图目标,并能在有限数量的刺激目标下抓取更多种类的不同物体,具有在复杂多变的场景下使用的潜力。所提出的SSVEP-BCI系统可以应用于复杂多变的场景,并且不局限于固定的对象类别和数量,因为融合的刺激界面可以自动更新物体与刺激目标的映射关系。原创 2024-08-29 09:59:37 · 1218 阅读 · 0 评论 -
加州大学圣地亚哥分校 沉浸式遥操作机器人系统
此外,低成本但高效的Eccentric Rotating Mass(ERM)执行器的使用,使得触觉反馈设备的实现更加经济实惠,进一步推动了该技术的普及和应用。为了探究触觉反馈装置对遥操作性能的实际影响,开发人员设计并实施了一项用户研究,并邀请了多位未经过专业培训的操作员参与,通过对比有无触觉反馈条件下的操作表现,研究人员发现触觉反馈显著提高了操作的成功率和效率。特别是在部分视线受阻的情况下,触觉反馈为操作员提供了额外的感知信息,帮助他们更准确地判断机器人与环境的交互状态,从而实现了更加精确和稳定的控制。原创 2024-08-24 20:57:36 · 984 阅读 · 1 评论 -
Science Robotics 受螳螂视觉启发的立体人工复眼技术及其边缘计算应用
近日Science Robotics发表了一篇关于《三维空间时空感知的立体人工复眼》文章,该人工复眼由弗吉尼亚大学工程与应用科学学院副教授Kyusang Lee及众多团队成员联合开发,通过与一些精妙的光电工程和创新的“边缘”计算(在捕获数据的传感器内或附近处理数据)相结合,克服了机器目前收集和处理现实世界视觉数据的方式中令人烦恼的限制。实时数据处理:通过集成在像素级的人工突触和本地处理器上的神经网络,系统能够在传感器内直接处理光学信息,减少了数据传输和存储的需求,从而实现了快速的实时响应。原创 2024-08-18 19:39:20 · 924 阅读 · 0 评论 -
Science Robotics封面 | 当机器人学会用‘快照‘导航,轻重量小内存实现‘长途跋涉‘
这些复杂的计算需要强大的处理器和大量的内存,远远超出了微型机器人的承载能力和能源预算。正如自然界中的小蚂蚁能够在广袤的沙漠中找到回家的路,这些微型"小飞侠"也可能在不久的将来,凭借着简单而高效的导航策略,在复杂的人类世界中自主高效地完成各类任务。特别是在一些GPS信号受限的场景,如密集的城市环境、洞穴等极端环境,或者GPS信号被干扰的情况下,这种自主导航能力将发挥巨大作用。同时,在一些需要快速部署的场景,如搜救行动,或者在温室、仓库等受控环境中,这种无需额外基础设施的导航方法也能大大降低成本和部署时间。原创 2024-08-15 14:03:03 · 916 阅读 · 3 评论 -
Science Robotics 受鳞片启发的可编程机器人结构,可同时进行形状变形和刚度变化
G至I分别展示了在鳞片数量从 1 个增加到 6 个、SAILS 的弹性模量从 10 MPa 到 1 GPa以及鳞片与底层之间的摩擦系数从 0 到 1三种情况下,SAILS 的归一化曲率与表观弯曲模量之间的权衡。为此,来自新加坡南洋理工大学的研究人员从覆盖在穿山甲和鱼类等生物身上的鳞片中汲取灵感,开发出一种机器人结构,其可以在高度集成的紧凑机体中同时改变硬度和形状。A展示了SAILS的灵感来源于穿山甲和鱼的自然鳞片,并展示了SAILS的表面图案。D展示了SAILS的变形和变刚度能力的实验验证。原创 2024-08-14 12:24:43 · 1205 阅读 · 0 评论 -
RSS 2024 清华大学交叉院高阳提出高效的机器人操作技能学习方法
ATM首先在视频数据上预训练一个语言条件轨迹预测模型,以预测视频帧内任意点的未来轨迹,而后,ATM框架通过利用视频中的轨迹信息,引导机器人学会执行一系列复杂的操作和任务,包括空间推理、物体操作、目标理解、长时视野规划以及跨形态和跨域的技能迁移。在视频中可以看到,借助ATM框架的强大助力,机器人仅需通过观察人类执行如叠衣服、将番茄放入盘子、用刷子整理玩具等无动作标签的视频数据集,学习其中任意2D点的轨迹建议,便能实现样本高效的策略学习,并具备跨具体任务的迁移能力,从而完美复刻人类的复杂动作!原创 2024-08-04 16:03:34 · 1187 阅读 · 0 评论 -
ICML 2024:从历史数据中挖掘最优策略,高效完成50+任务,“离线策略提升的在线演员-评论家”研究工作
其实验结果如下图所示。由于两个智能体共享了由SAC策略探索的数据并存放在SAC缓冲区中,与SAC策略相比,并发训练的IQL策略能够在数据不断增长的情况下自动辨识出性能更优的策略,即随着数据的增多与覆盖度提升,这样的方式能够更好地利用已收集的数据,获得更佳的策略性能。在6个任务类的53个任务中,包含了多关节运动控制、机械臂操作任务、复杂肌肉控制等,该方法超越了经典的非策略无模型强化学习方法,并与基于模型的强化学习方法具有相当的采样效率和性能,而训练耗时降低了5倍,参数量降低了2倍,显著提升了训练效率。原创 2024-08-03 09:55:55 · 545 阅读 · 0 评论
分享