大数据测试:Spark + Kafka 实时数据处理与窗口计算教程
1. 概述
1.1 大数据技术概述
大数据(Big Data)指的是无法用传统数据库技术和工具进行处理和分析的超大规模数据集合。在大数据技术中,实时数据流的处理尤为重要,尤其是如何高效地对海量的实时数据进行采集、存储、处理与分析。
在这方面,Apache Kafka 和 Apache Spark 是两个关键技术。Kafka 作为分布式流处理平台,可以高效地进行实时数据流的生产和消费,而 Spark 提供了强大的分布式计算能力,尤其是其扩展的流式计算模块 Spark Streaming,非常适合处理实时数据流。
1.2 Apache Kafka 与 Spark 的结合
- Kafka 是一个分布式消息队列,可以处理高吞吐量、低延迟的实时数据流。Kafka 被广泛用于日志收集、监控系统、实时数据传输等场景。
- Spark 是一个统一的分析引擎,支持批量处理、流式处理和图计算。Spark Streaming 是 Spark 的一个流式处理组件,用于实时处理流数据。
通过结合 Kafka