POJ 1003

POJ 1003

原题
Description

How far can you make a stack of cards overhang a table? If you have one card, you can create a maximum overhang of half a card length. (We’re assuming that the cards must be perpendicular to the table.) With two cards you can make the top card overhang the bottom one by half a card length, and the bottom one overhang the table by a third of a card length, for a total maximum overhang of 1/2 + 1/3 = 5/6 card lengths. In general you can make n cards overhang by 1/2 + 1/3 + 1/4 + … + 1/(n + 1) card lengths, where the top card overhangs the second by 1/2, the second overhangs tha third by 1/3, the third overhangs the fourth by 1/4, etc., and the bottom card overhangs the table by 1/(n + 1). This is illustrated in the figure below.

Input

The input consists of one or more test cases, followed by a line containing the number 0.00 that signals the end of the input. Each test case is a single line containing a positive floating-point number c whose value is at least 0.01 and at most 5.20; c will contain exactly three digits.
Output

For each test case, output the minimum number of cards necessary to achieve an overhang of at least c card lengths. Use the exact output format shown in the examples.
Sample Input

1.00
3.71
0.04
5.19
0.00
Sample Output

3 card(s)
61 card(s)
1 card(s)
273 card(s)

翻译
描述

您可以将多张纸牌悬在桌子上多远?如果您有一张卡,则最多可以创建一半的卡长。(我们假设这些卡片必须垂直于桌子。)使用两张卡片,您可以使最上面的卡片悬垂在底部的卡片长度的一半,而最下面的卡片悬垂在桌面的卡片长度的三分之一,总最大悬垂为1/2 + 1/3 = 5/6卡长度。通常,您可以将n张卡片悬垂1/2 + 1/3 + 1/4 + … + 1 /(n +1)牌的长度,其中顶牌在第二张牌上悬垂1/2,第二张牌在第三张悬垂1/3,第三张在第四张悬垂1/4,依此类推,而底牌在桌子上悬垂1 /。 (n + 1)。如下图所示。

输入项

输入由一个或多个测试用例组成,其后一行包含表示输入结束的数字0.00。每个测试用例都是一条包含正浮点数c的单行,其浮点数c至少为0.01且最大为5.20;c将精确地包含三个数字。
输出量

对于每个测试用例,输出实现至少c个卡长度的突出所需的最小卡数。使用示例中显示的确切输出格式。
样本输入

1.00
3.71
0.04
5.19
0.00
样本输出

3卡
61卡
1卡
273卡

思路分析:
根据题中的测试数据可以知道这个问题的规模并不大,题中说输入的最大为5.20,而测试数据中的5.19的输出结果为273, 因此可以知道数据的大概规模。

我的思路是先在一个数组中将结果存贮下来,这样就不必每次都循环判断,降低时间复杂度。在定义数组时不必规定很大,但是也不要规定为274左右,虽然数据规模在273右边一点,但是要知道分母越来越大,数字 1 除以这个数字的结果很小,所以求和时即使是0.01也可能是还几个数字相加的结果,因此这里讲数组定为280个

然后循环判断即可

另外, 1/n 是发散的,并没有直接的求和公式

下面是AC代码

#include <stdio.h>
#include <math.h>
int main()
{
	int i;
	float temp,sum=0;  //temp用于存放每一个分数的结果, sum用于存放累加和
	float resu[280]={0,0}; //用于存放所有结果
	
	float n; //输入测试数据
	scanf("%f",&n);
	
	for(i=2;i<280;++i)  //计算所有结果并存储
		{
			temp=1.0/i;
			sum+=temp;
			resu[i]=sum;
		}
		
	while(n != 0) //循环判断
	{
		for(i=2;i<280;++i)
		{
			if(resu[i] > n && resu[i-1] < n)
				printf("%d card(s)\n",i-1);  //打印结果,注意结果格式
		}
		
		scanf("%f",&n);//用于循环
	}
	
	return 0;
 } 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值