前提
现在大部分 AI 产品采用的的大模型(dreamboth),但是在产品的训练中也发现了不仅仅需要较大的内存还需要好的 GPU 成本较高,而且模型较大修改只能重新训练不能修改,为了解决这个问题开始推荐 lora 小模型时代.接下来讲解 lora 模型以及使用小模型(lora)的Koya.SS.GUI的流程.
关于Koya.SS.GU的使用教程后期会慢慢讲出来,后面的所有理论或者是英文后面都会给解释.
补充 2 个概念"扩散模型"与"微扩散模型"
首先讲一个基础概念"扩散模型"与"微扩散模型",在机器学习的流程是AI将图片马赛克化,并且提取图片或者是文本的特征,然后结合网络上或者是现有的模型进行绘图.
扩散模型:
一种用于描述某些物质或现象在空间和时间上传播或扩散的数学模型。扩散模型通常基于一些基础假设,如扩散物质的性质、扩散介质的特性、扩散过程中的环境影响等因素,以及一些已知的实验数据或观察结果。扩散模型可以帮助科学家和工程师预测和控制许多现实世界中的扩散现象。
扩散模型虽然在研究物质或现象在空间和时间上的传播和扩散方面具有重要意义,但是也存在一些缺点,下面是几个主要的缺点:
- 假设条件过于简化:扩散模型通常基于一些假设条件,如扩散物质的性质、扩散介质的特性、扩散过程中的环境影响等,这些条件往往过于简化,不能完全反映实际情况。
- 参数难以确定:扩散模型需要大量的实验数据和观测结果来确定模型的参数,但是这些数据和结果往往受到许多因素的影响,如实验条件、观测误差等,使得参数难以准确确定。
- 预测精度有限:由于扩散模型往往是基于简化的假设条件和参数估计,所以其预测精度有限,不能完全准确地描述实际情况。
- 无法考虑复杂的非线性效应:扩散模型通常是基于线性扩散方程建立的,不能考虑复杂的非线性效应和反应,如化学反应、生物反应等。
- 受到空间和时间尺度的限制:扩散模型通常是基于一定的空间和时间尺度建立的,不能完全描述微观和宏观尺度上的扩散现象。
随着 AI 技术的发展,为了解决dreamboth,逐步的使用了微扩散模型
微扩散模型
是一种描述粒子在随机环境中运动的数学模型。它通常被用来研究一些复杂系统的动力学行为,如生物群体的扩散、金融市场的波动等。该模型假设粒子在空间中随机游走,并且在每个时间步长内以一定的概率跳到相邻的位置。这个概率是根据粒子周围环境的特征来确定的。微扩散模型的数学形式通常是一个随机微分方程,可以使用随机模拟的方法来模拟粒子的运动行为。
微扩散模型是一种数学模型,它主要用于研究物理、化学、生物等领域中的扩散现象。与传统的扩散模型相比,微扩散模型具有以下几个优点:
- 能够更准确地描述扩散过程中的非线性效应:传统的扩散模型通常假设扩散系数为
本文介绍了Lora模型作为替代大模型的解决方案,重点讲述了微扩散模型相较于传统扩散模型的优势。推荐使用Koya.SS.GUI进行Lora模型的训练,该软件简单易用,支持模型的检查点管理和微调。训练流程包括环境准备、图像准备、模型选择、配置文件设置、训练过程和正则化,最后强调了训练时的注意事项和模型混用策略。
最低0.47元/天 解锁文章
1328

被折叠的 条评论
为什么被折叠?



