【黑盒对抗攻击】ICML 2021:SPADE: A Spectral Method for Black-Box Adversarial Robustness Evaluation

本文介绍了一种名为SPADE的黑盒方法,用于评估机器学习模型的对抗性鲁棒性。通过分析输入/输出数据的双射距离映射,SPADE使用谱图理论量化模型的鲁棒性。它计算输入/输出图的拉普拉斯矩阵的最大广义特征值作为对抗性鲁棒性的度量,该值还是最佳利普希茨常数的上界。此外,SPADE还能为每个数据样本分配鲁棒性评分,用于指导对抗性训练和增强模型的鲁棒性。实验结果表明,SPADE在MNIST和CIFAR-10数据集上表现出色。
摘要由CSDN通过智能技术生成

论文地址:

https://arxiv.org/abs/2102.03716

代码地址:

https://github.com/Feng-Research/SPADE

论文摘要:

这篇文章介绍了一种黑盒谱方法来评估给定机器学习模型的对抗性鲁棒性,作者将该方法方法命名为SPADE,该方法利用了输入/输出图之间的双射距离映射,其中这些图被构造为近似与输入/输出数据对应的流形

利用广义的考特-费舍尔定理(Courant-Fischer theorem),作者提出了一个评价给定模型对抗鲁棒性的 SPADE 分数,并证明了它是流形设置下最佳利普希茨常数(Lipschitz constant)的上界

为了揭示最容易受到对抗性攻击的非鲁棒数据样本,作者开发了一个利用优势广义特征向量的谱图嵌入算法,这个嵌入算法允许为每个数据样本分配一个鲁棒性评分,可以进一步用于更有效的对抗性训练

作者的实验表明,所提出的 SPADE 方法为使用MNIST和CIFAR-10数据集进行反向训练

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BIT可达鸭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>