超越 CLIP 的视觉-语言模型:Scaling Up Visual and Vision-Language Representation Learning

Scaling Up Visual and Vision-Language Representation Learning

论文地址:

ICML 2021: https://arxiv.org/abs/2102.05918

主要工作:

在本文中,作者利用了超过10亿对图像-文本对的噪声数据集,该数据集在 Conceptual Captions 数据集中无需昂贵的过滤或后处理步骤即可获得,并使用了一个简单的双编码器架构学习了使用对比性损失来对齐图像和文本对的视觉和语言表示。

该算法不仅在 ImageNet 和 VTAB 等图像分类数据集上取得了 SOTA 的精度,而且在他们的下游任务(MSCOCO 等)以及零镜头分类任务上表现也很突出。同时该算法也支持跨模态的文本-图像对的搜索。

图像和文本编码器是通过对比损失(表述为标准化的 softmax)学习的,该损失将匹配图像文本对的嵌入推在一起,同时将不匹配图像文本对的嵌入分开。

在这里插入图片描述

数据集:

从训练数据集中随机采样的示例图像-文本对,明显嘈杂的文本注释用斜体标注

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BIT可达鸭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>