2021 Yann LeCun 团队对模型泛化性能的插值和外推理论的探讨:Learning in High Dimension Always Amounts to Extrapolation

研究发现,在高维数据集(>100维)上,深度学习模型几乎总是进行外推而非插值。传统的插值理论不再适用,插值概率随着维度增加而接近于0。实验表明,无论是真实数据还是嵌入空间,插值都是难以实现的,挑战了插值与泛化性能之间的传统认知。理论证明支持这一观点,揭示在高维空间中,需要指数级增加的数据量才能保持插值状态。

论文地址:

https://arxiv.org/abs/2110.09485

主要工作:

插值和外推( interpolation and extrapolation)的概念是从深度学习到函数近似的各个领域的基础。当样本落在给定数据集凸包的边界内时,样本 x \boldsymbol{x} x 就会发生插值。外推发生在 x \boldsymbol{x}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BIT可达鸭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值