Learning in High Dimension Always Amounts to Extrapolation
论文地址:
https://arxiv.org/abs/2110.09485
主要工作:
插值和外推( interpolation and extrapolation)的概念是从深度学习到函数近似的各个领域的基础。当样本落在给定数据集凸包的边界内时,样本 x \boldsymbol{x} x 就会发生插值。外推发生在 x \boldsymbol{x}
研究发现,在高维数据集(>100维)上,深度学习模型几乎总是进行外推而非插值。传统的插值理论不再适用,插值概率随着维度增加而接近于0。实验表明,无论是真实数据还是嵌入空间,插值都是难以实现的,挑战了插值与泛化性能之间的传统认知。理论证明支持这一观点,揭示在高维空间中,需要指数级增加的数据量才能保持插值状态。
https://arxiv.org/abs/2110.09485
插值和外推( interpolation and extrapolation)的概念是从深度学习到函数近似的各个领域的基础。当样本落在给定数据集凸包的边界内时,样本 x \boldsymbol{x} x 就会发生插值。外推发生在 x \boldsymbol{x}
1711
1924

被折叠的 条评论
为什么被折叠?