A Unified Query-based Paradigm for Point Cloud Understanding
论文简介:
对三维点云的理解是自动驾驶和机器人技术中的一个重要组成部分。在本文中,作者提出了一种新的嵌入-查询范式(EQ-范式),用于三维理解任务,包括检测、分割和分类。
EQ-范式是一个统一的范式,它能够将现有的 3D 主干架构与不同的任务头相结合。在 EQ-范式下,输入点云首先在嵌入阶段进行编码,采用任意的特征提取体系结构,该体系结构独立于任务和头部。然后,查询阶段允许针对不同的任务头进行特征编码。这是通过在查询阶段引入中间表示,即 Q-表示来实现嵌入阶段和任务头。作者还设计了一种新的 Q-Net 作为查询阶段网络。
在各种三维任务上的广泛实验结果表明,EQ-范式与 Q-Net 相结合是一个通用和有效的模型,使骨干和头部能够灵活协作。它进一步提高了最先进的方法的性能。

具体实现:

论文提出了一种新的嵌入-查询(EQ)范式,用于3D点云理解任务,如目标检测、语义分割和分类。该范式包括嵌入阶段和查询阶段,其中Q-Net作为查询阶段网络,通过Transformer结构生成查询特征。实验表明,EQ范式结合Q-Net是通用且高效的,提升了现有方法的性能。
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



