深度学习入门—绪论

前言

   笔者研究生阶段需要用到深度学习的相关理论,但搜遍全网,没有找到适合初学小白快速入手的教程,著名的吴恩达老师的课程理论偏多而几乎没有代码实例,李沐老师的深度学习课程理论和实践相结合确实是不错的课程,但是需要有一定的基础,包括但不限于:线性代数,矩阵论,概率论,微积分,信息论等高等数学的课程以及某些代码基础,因为笔者数学基础也不甚牢固,因此就打算跟随李沐老师的教程,边看边学,遇到不懂的概念,理论,公式,将详细解读,遇到代码也将详细解剖分析,希望自己能够完全明白其中关窍,也能够有益于后人。

一些基础概念定义

核心组件

可以学习的数据(data)
转换数据的模型(model)
目标函数(objective function)

   在机器学习中,我们需要定义模型的优劣程度的度量,这个度量大多数情况下是可优化的,我们称为目标函数。我们通常定义一个目标函数,并希望优化它的最低点。因为越低越好,所有有些函数有时被称为损失函数(loss function)
   通常,损失函数是根据参数定义的,并取决于数据集。在一个数据集上,我们通过最小化总损失来学习模型参数的最佳值。这个数据集由一些为了训练而收集的样本组成,称为训练数据集(training dataset)。然而,在训练数据上表现良好的模型,并不一定在新的数据集上有一样的表现,这里的新数据集通常称为测试数据集(test dataset)。

优化算法(algorithm)

  一旦我们获得了一些数据源及其表示、一个模型和一个合适的损失函数,我们接下来就需要一种算法,它能够搜索出最佳参数,以最小化损失函数。 深度学习中,大多流行的优化算法通常基于一种基本方法–梯度下降(gradient descent)。 简而言之,在每个步骤中,梯度下降法都会检查每个参数,看看如果你仅对该参数进行少量变动,训练集损失会朝哪个方向移动。 然后,它在可以减少损失的方向上优化参数。

各种机器学习问题简介

监督学习

   监督学习supervised learning,这类学习擅长在“给定输入特征”的情况下预测标签。每个“特征-标签”对都称为一个样本example。有时,即使标签是未知的,样本也可以指代输入特征。
  我们的目标是生成一个模型,能够将任何输入特征映射到标签,即预测。可以分为下述几类。

回归问题

   举例说明:我们有一组房屋销售数据表格,其中有一些属性,例如房屋面积,卧室数量,浴室数量等等,当然还有最终的价格。
   我们可以通过对这组数据的训练,最后得到一个模型,只要我们能够得到其面积,卧室数量,浴室数量,就能预测出它的价格。

分类问题

   例如我们有一组手写的图片,其中由字母数字组成,我们可以有26+10个分类来识别字母数字,我们训练一个分类器,当我们输入一副图片时,我们能够通过模型得到其中的内容。

标记问题

   考虑一个新的问题,当我们训练了一个分类模型,这个模型能够很轻松的把已知的动物进行分类,它能够准确地知道这是猫,是狗还是一头牛,但是当出现了一个新的物种,例如一头牛骑着一匹马,它就不能认出。
   学习预测不相互排斥的类别的问题称为多标签分类(multi-label classification)。 举个例子,人们在技术博客上贴的标签,比如“机器学习”、“技术”、“小工具”、“编程语言”、“Linux”、“云计算”、“AWS”。 一篇典型的文章可能会用5-10个标签,因为这些概念是相互关联的。 关于“云计算”的帖子可能会提到“AWS”,而关于“机器学习”的帖子也可能涉及“编程语言”。

搜索

   这并不是简单的搜索,我们希望对一组项目进行排序。比如我们搜索“深度学习”,得到一串网页排序,搜索引擎是如何知道最佳排序的呢?他如何知道最符合我们需求的是 A B C D E而不是E D C B A。

推荐系统

   另一类与搜索和排名相关的问题是推荐系统(recommender system),它的目标是向特定用户进行“个性化”推荐。 例如,对于电影推荐,科幻迷和喜剧爱好者的推荐结果页面可能会有很大不同。 类似的应用也会出现在零售产品、音乐和新闻推荐等等。

序列学习

  在医学上序列输入和输出就更为重要。 设想一下,假设我们用一个模型来监控重症监护病人,如果他们在未来24小时内死亡的风险超过某个阈值,这个模型就会发出警报。 我们绝不希望抛弃过去每小时有关病人病史的所有信息,而仅根据最近的测量结果做出预测。
  这些问题是序列学习的实例,是机器学习最令人兴奋的应用之一。 序列学习需要摄取输入序列或预测输出序列,或两者兼而有之。 具体来说,输入和输出都是可变长度的序列,

无监督学习
聚类(clustering)问题:

没有标签的情况下,我们是否能给数据分类呢?比如,给定一组照片,我们能把它们分成风景照片、狗、婴儿、猫和山峰的照片吗?同样,给定一组用户的网页浏览记录,我们能否将具有相似行为的用户聚类呢?

主成分分析(principal component analysis)问题:

我们能否找到少量的参数来准确地捕捉数据的线性相关属性?比如,一个球的运动轨迹可以用球的速度、直径和质量来描述。再比如,裁缝们已经开发出了一小部分参数,这些参数相当准确地描述了人体的形状,以适应衣服的需要。另一个例子:在欧几里得空间中是否存在一种(任意结构的)对象的表示,使其符号属性能够很好地匹配?这可以用来描述实体及其关系,例如“罗马” − “意大利” + “法国” = “巴黎”。

因果关系(causality)和概率图模型(probabilistic graphical models)问题:

我们能否描述观察到的许多数据的根本原因?例如,如果我们有关于房价、污染、犯罪、地理位置、教育和工资的人口统计数据,我们能否简单地根据经验数据发现它们之间的关系?

生成对抗性网络(generative adversarial networks):

为我们提供一种合成数据的方法,甚至像图像和音频这样复杂的结构化数据。潜在的统计机制是检查真实和虚假数据是否相同的测试,它是无监督学习的另一个重要而令人兴奋的领域。

与环境互动

简单的离线学习有它的魅力。 好的一面是,我们可以孤立地进行模式识别,而不必分心于其他问题。 但缺点是,解决的问题相当有限。 如果你更有雄心壮志,那么你可能会期望人工智能不仅能够做出预测,而且能够与真实环境互动。 与预测不同,“与真实环境互动”实际上会影响环境。 这里的人工智能是“智能代理”,而不仅是“预测模型”。 因此,我们必须考虑到它的行为可能会影响未来的观察结果。

强化学习

在强化学习问题中,agent在一系列的时间步骤上与环境交互。 在每个特定时间点,agent从环境接收一些观察(observation),并且必须选择一个动作(action),然后通过某种机制(有时称为执行器)将其传输回环境,最后agent从环境中获得奖励(reward)。 此后新一轮循环开始,agent接收后续观察,并选择后续操作,依此类推。 强化学习的过程在 图1.3.7 中进行了说明。 请注意,强化学习的目标是产生一个好的策略(policy)。 强化学习agent选择的“动作”受策略控制,即一个从环境观察映射到行动的功能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值