
【无标题】
其实可以看出语义相似的损失函数——主要思路是构建句子之间的相似度矩阵,然后通过比较正例和负例的相似度,采用交叉熵、log-sum-exp等方式计算loss,优化模型的句子表示,使得正例相似度更高。常用的语义相似度任务数据集包括STS-B,SICK等。模型训练过程中需要大量语义相关的文本对构成监督数据,损失函数则常采用余弦相似度与标注相似度的差异作为优化目标。这个任务的主要难点在于获得合适的文本向量表示,需要模型能够捕捉文本的语义信息,忽略词汇表面的差异,根据上下文判断语义是否相近。适用于不同的训练目标。







