利用python实现DCT变换,并且过滤掉高频信息

本文介绍了如何使用OpenCV库进行离散余弦变换(DCT)并应用到图像处理中,通过矩阵操作筛选高频和低频信息,展示了滤波对图像恢复的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近学习DCT变换是,在网上找代码,不得不说,真是垃圾堆里翻吃的,全都是复制粘贴。不过还在却是找到了几个不错的文章,在此结合自己的学习,在这重新写一下。
代码如下

import cv2
import numpy as np
import matplotlib.pyplot as plt
# 利用cv2读取图像,0代表单颜色通道,其他参数自行了解。
img = cv2.imread('11.jpg',0)
#转换成浮点类型
img_f32 = img.astype(np.float)
#这里是为了打印看下图像尺寸,非必要步骤
height, width = img.shape
print(height,width)#结果是1500,1500
# 利用cv2中的函数进行离散余弦变换
dct = cv2.dct
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值