Matlab使用杂谈3-Fourier函数实现傅里叶变换

本文深入探讨了Matlab中傅里叶变换的应用,包括Fourier函数的基本使用、参数变换、向量输入处理及傅里叶逆变换的实现。通过实例演示了如何在Matlab环境中进行有效的信号处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

傅里叶变换

傅里叶展开式(Fourier expansion)是指用三角级数表示的形式,即一个函数的傅里叶级数在它收敛于此函数本身时的一种称呼。傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合
来源百度百科

来源百度百科

Matlab中的Fourier函数

Matlab中关于Fourier使用的讲解
语法:
fourier(f)
fourier(f,transVar)
fourier(f,var,transVar)

f-输入,可以是表达式、函数、向量或矩阵等
var-变量,一般为时间变量或空间变量,如果不设置该变量,一般使用函数中的符号变量作为默认值

transVar-转换变量,可以是符号变量,表达式,向量或矩阵,该变量通常称为“频率变量”,默认情况下,傅立叶使用w,如果w是f的自变量,则傅立叶使用v。
The Fourier transform of the expression f = f(x) with respect to the variable x at the point w is

在这里插入图片描述

c and s are parameters of the Fourier transform. The fourier function uses c = 1, s = –1.

Fourier使用实例

普通用法

clear;clc
%% Fourier函数的使用
%-----------基本使用------------%
% 一般默认w为变换变量,x为待变换变量
syms t x
f=exp(-t^2-x^2);
f1=fourier(f)
% 指定转换变量
syms y
f2=fourier(f,y)
% 指定待变换变量和变换变量
f3=fourier(f,t,y)

运行输出结果为:
在这里插入图片描述

参数变换

The Fourier transform of the expression f = f(x) with respect to the variable x at the point w is

在这里插入图片描述

c and s are parameters of the Fourier transform. The fourier function uses c = 1, s = –1.

%------傅里叶变换参数的变换------%
% 傅里叶中c默认为1,s默认为-1
% 使用sympref改变其参数
sympref('FourierParameters',[2 1]);
fourier(f)
% 在使用完后记得恢复默认,否则影响下次使用
sympref('FourierParameters','default');

运行结果为:
在这里插入图片描述

向量输入

%------------向量输入------------%
syms a b c d w x y z
M=[exp(x) 1;sin(y) i*z];
vars=[w x;y z];
transVars=[a b; c d];
fourier(M,vars,transVars);

运行结果为:
在这里插入图片描述

傅里叶变换无结果

%---------傅里叶变换不存在--------%
syms f(t) w
fourier(f,t,w)

运行结果为:
在这里插入图片描述

傅里叶逆变换

利用ifourier进行变换,语法基本与fourier一致

ifourier(F,w,t)
ans = f(t)
MATLAB中,如果你有一个离散信号`Sa(w)`,并且想要通过`ifourier`函数计算其二维傅立叶变换`F(jw) = 2 * Sa(w)`,然后绘制其逆变换,你可以按照以下步骤编写代码: ```matlab % 假设Sa(w)是一个已知的离散信号,例如一个简单的正弦波序列 Sa = sin(2*pi*0.5*(0:length(Sa)-1)/length(Sa)); % 计算F(jw) = 2 * Sa(w) Fs = length(Sa); % 原始信号长度 dw = Fs/(length(Sa) - 1); % 求取频率间隔 w = (0:length(Sa)-1)*dw; % 频率向量 F_jw = 2 * Sa; % 假设F(jw)已经是Sa(w)的两倍 % 使用ifourier函数计算傅里叶逆变换,注意需要指定原信号的长度 inv_F = ifourier(F_jw, 'n', Fs); % 将结果转换回时间域信号 time_domain_signal = real(ifft(inv_F)); % 绘制原始信号Sa(w)和逆变换后的信号 figure; subplot(2,1,1); plot(w, Sa, 'b', w, F_jw, 'r'); title('Original Signal and Fourier Transform'); xlabel('Frequency (Hz)'); ylabel('Amplitude'); subplot(2,1,2); plot(time_domain_signal); title('Inverse Fourier Transform'); xlabel('Sample Index'); ylabel('Amplitude'); % 显示图像 show; % 如果需要保存图像,可以使用saveas命令替换"show" % saveas(gcf, 'FourierTransformComparison.png', 'png'); ``` 在这个代码中,我们首先创建了一个示例的离散信号`Sa`,然后计算了`F(jw)`。接着,我们用`ifourier`对`F(jw)`进行了逆变换,并将结果转换回时间域。最后,我们绘制了原始信号和逆变换后的信号进行比较。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值