语音增强算法研究系统笔记 - 带噪语音预处理:趋势项、直流分量与数字滤波

本文探讨了带噪语音模型,解释了信噪比的定义,并详细介绍了语音信号预处理,包括消除趋势项和直流分量的重要性及方法。此外,还提到了数字滤波器在提取语音低频成分中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

带噪语音模型

对于加性噪声,其由纯净语音和噪声相叠加而成,设纯净语音为s(n),噪声语音为d(n),则带噪语音为
x(n) = s(n) + d(n)
一般认为纯净语音信号s(n)与噪声d(n)是互不相关的,即E[s(n)d(n)] = 0,其傅里叶变换可写为
X(w)= S(w) + D(w)
说明带噪语音的频谱等于语音频谱和噪声频谱的叠加

信噪比

一般而言,语音处理中会用信噪比(Signal to Noise Ratio,SNR)来表示带噪信号中纯净语音s(n)与d(n)的比值,其定义为:
SNR = 10log10(s2(n)/d2(n))
其中s2(n)表示纯净信号的能量,d2(n)表示噪声的能量

带噪语音的产生

在实际中,会存在各种各样的带噪语音,但他们并不能作为研究对象,因为我们无法从实际带噪语音中提取出噪声信号,由此不能得到信噪比,处理之后也无法得知信噪比改善了多少;因此我们需要手动为语音添加一些噪声,因此在进行处理后就能对比信噪比是否有所提升,以此来评定算法效果;

语音信号预处理

消除趋势项和直流分量

在采集语音信号数据的过程中,由于测试系统的某些原因在时间序列中会产生的一个线性的或者慢变的趋势误差,例如放大器随温度变化产生的零漂移,传声

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值