【算法专题--回文】最长回文子串 -- 高频面试题(图文详解,小白一看就懂!!)

目录

一、前言

二、题目描述 

三、预备知识 

🥝 什么回文串 ?  

四、题目解析   

五、总结与提炼    

六、共勉    


一、前言

        最长回文子串 这道题,可以说是--回文专题 --,最经典的一道题,也是在面试中频率最高的一道题目,通常在面试中,面试官可能会从多个方面考察这道题目,所以大家需要对这道题目非常熟悉哦!!
       本片博客就来详细的讲讲解一下 最长回文子串 的实现方法,让我们的面试变的更加顺利!!!

二、题目描述 

题目链接:5. 最长回文子串 - 力扣(LeetCode) 

三、预备知识 

🥝 什么回文串 ?  

 回文串 的概念就是正着读和倒着读是一样的字符串,分为以下两种情况  

  • ① 11211  ---- 奇数个
  • ② 112211    ---- 偶数个

不难发现,除了中间的字符外所有的字符均在一首一尾出现了一次,也就是说,出现在两边的字符数量一定是偶数,只有出现在中间的字符数量可以是奇数  

  • 现在,我们把上述①、②回文串拆分成 left,mid,right三个部分,如下图 

  • 「回文串」长度为偶数所有不同字符的出现次数都为「偶数」
  • 「回文串」长度为奇数位于中点的字符出现「奇数」次其余字符出现「偶数」次

因此,某字符串是回文串排列之一的「充要条件」为此字符串中,最多只有一种字符的出现次数为「奇数」其余所有字符的出现次数都为「偶数」。   

四、题目解析   

中心扩展法  

  • 如果中心点相等(s[i] = s[j]),就检查各自的下一位是否相等 s[i-1] = s[j+1]?
  • 我们可以把每个字符 s[i] 作为子串的中心,然后依次往两边进行搜索。要注意的是,每个字符可以构成奇数长度和偶数长度。因此我们中心要分两种情况进行枚举。

  • 中心扩散的方式最后我们得到的是子串的中心索引和长度,为了截取子串,我们需要推算子串起点索引。 

class Solution {
public:
    string longestPalindrome(string s) 
    {
        //中心扩展算法
        int begin = 0 , len = 0 , n = s.size();
        for(int i = 0; i < n;i++) // 依次枚举所有的中点
        {
            //先做一次奇数次的扩展
            int left = i , right = i;
            //确保 left 和 right 不能越界
            while(left >=0 && right < n && s[left]==s[right])
            {
                left--;
                right++;
            }
            // 如果新的长度大于之前的长度,那就更新
            if(right-left-1 > len)
            {
                // 计算其实位置和长度
                begin = left + 1; // 因为每次循环 left 和 right 会多运行一次
                len = right - left -1;
            }
            //再做一次偶数次的扩展
            left = i , right = i + 1;
            while(left >=0 && right < n && s[left]==s[right])
            {
                left--;
                right++;
            }
            if(right-left-1 > len)
            {
                begin = left + 1;
                len = right - left -1;
            }
        }
        return s.substr(begin,len);
    }
};

五、总结与提炼    

最后我们来总结一下本文所介绍的内容,本文讲解来一道力扣中有关 最长回文子串 的题目,这道题目是校招笔试面试中有关 回文 章节非常高频的一道题目,大家下去一定要自己再画画图,分析一下,把这段代码逻辑自己实现一遍,才能更好地掌握 !!

六、共勉    

 以下就是我对  最长回文子串 的理解,如果有不懂和发现问题的小伙伴,请在评论区说出来哦,同时我还会继续更新对 回文专题 的理解,请持续关注我哦!!!   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值