M2BT:Multi-View Multi-Bayesian Predictive Learning for Tracking翻译工作

Abstract

摘要—视觉跟踪是计算机视觉中最具挑战性的问题之一。 大多数最新的视觉跟踪器都面临三个挑战性问题:非多样化的可分辨特征表示,粗糙的目标定位器和正样本的数量有限。
为了解决上述问题,本文提出了一种多视图多贝叶斯预测学习算法。 该算法融合了多种观点,并利用强大的多种信息资源,可以有效地解决非多样化的特征识别问题。 它在扩展的边界框上建立了多个高斯回归模型,以预测最佳的对象位置,从而自然地解决了粗略的对象定位器和有限数量的正样本问题。
已经对各种视频基准序列对提出的方法进行了全面评估。 评估结果表明,所提出的方法优于其他最新的视觉跟踪器。
索引词-最大置信度提升,半监督学习,视觉跟踪

Introduction

visual跟踪是在给定的第一个视频帧中标有边界框的初始对象的情况下,在后续视频帧中定位对象。 视觉跟踪已成为计算机视觉中的热门研究主题[1] – [3],[13],[15],[19],[20],[33],[34],并且因其两个而闻名 独特的特性:i)在视频监控,视频检索和体育视频分析中具有广泛的应用; ii)由于物体的外观变化较大,物体旋转,严重的遮挡以及视频帧中的照明变化等,它仍然是计算机视觉中最具挑战性的问题之一。
现有的大多数视觉跟踪器由三个组件组成:特征表示(外观模型),模型更新器和集成后处理器[16]。 在这三个组件中,“功能表示”和“模型更新器”是两个必不可少的组件,它们在跟踪对象中起着关键作用,但存在以下挑战性问题:
视觉跟踪是在给定的第一个视频帧中标有边界框的初始对象的情况下,在后续视频帧中定位对象。 视觉跟踪已成为计算机视觉中的热门研究主题[1] – [3],[13],[15],[19],[20],[33],[34],并且因其两个而闻名 独特的特性:i)在视频监控,视频检索和体育视频分析中具有广泛的应用; ii)由于物体的外观变化较大,物体旋转,严重的遮挡以及视频帧中的照明变化等,它仍然是计算机视觉中最具挑战性的问题之一。
现有的大多数视觉跟踪器由三个组件组成:特征表示(外观模型),模型更新器和集成后处理器[16]。 在这三个组件中,“功能表示”和“模型更新器”是两个必不可少的组件,它们在跟踪对象中起着关键作用,但存在以下挑战性问题
在这里插入图片描述
1)非多样化区分特征表示:简单特征对象表示始终限制跟踪性能。 在跟踪领域,跟踪数据可以通过各种类型的视觉视图来表示,包括颜色[4],LBP [22]和HoG [21]等。对象表示在不断发展。 因此,它在不同的特征空间中具有不同的辨别力。 但是,在跟踪过程中总是会忽略这种多样化的区分,这可能会导致外观模型的区域更新不正确。 然后分类错误将累积并最终使跟踪器漂移[36]。
2)粗略的对象定位器:由于对象的外观变化较大,对象旋转,严重的遮挡以及视频帧中的光照变化,传统的对象跟踪算法无法非常精确地定位对象,因此使跟踪器在导航器中漂移了。 后续视频帧。
3)正样本数量有限:跟踪对象的正样本数量特别受视觉跟踪限制,这使得建立基于学习的外观模型和基于学习的对象定位模型变得极为困难。

相关工作

最近,许多研究人员广泛使用综合基准[2]来评估在线跟踪算法的有效性。 在建议的跟踪器中,多专家[13]系统(MEEM)使用熵最小化跟踪器并建立了过去的快照专家数据库,可以对其进行识别以较少歧义地定位目标。 MEEM提出了一种潜在的机制来纠正跟踪演变过程中的过去错误。 但是,其跟踪性能在很大程度上受到上述三个问题的限制。
在本文中,我们提出了一种多视图多贝叶斯预测学习算法,以解决当前在一个框架中存在的上述问题。 我们的算法集成了多个视图以构建一个多视图多专家集成,它可以利用强大的多种信息源来解决非多样的区分特征表示问题,从而提高跟踪性能,如图1所示。
为了防止跟踪器漂移,我们的方法利用了强大的搜索机制来精确定位对象。
大多数现有的对象检测[10],[12]算法不能直接用于跟踪过程。 我们的方法重新构造了目标检测算法,以实现跟踪目的。
虽然跟踪对象的正样本有限,但负样本足够收集。 因此,如何充分利用阴性样品对于一个好的跟踪器提高跟踪性能至关重要。 我们的方法按照方案[13]围绕粗糙物体的位置扩展了一组边界框,并反复执行细粒度的搜索算法以将良好的搜索框识别为负样本。 通过在扩展的边界框上建立多个高斯回归模型以预测最佳对象位置,我们的方法自然可以同时解决粗略对象定位器和有限数量的正样本问题。
已经提出了多种方法来进行特征融合[5]-[9]。 在本文中,我们要开发新颖的跟踪算法,而不是设计新功能。 我们工作的主要贡献可以概括为三个方面:
首先,我们提出了一种新颖的多视图多贝叶斯预测学习跟踪器(M2BT),该跟踪器可以通过使用粗略搜索周围区域的一些区域建议的细粒度搜索算法来找到更准确的对象位置。
其次,我们设计了一种基于多特征集成的多专家最小化修复方案。 与先前的工作[13]相比,通过共同考虑不同专家的不同观点之间共享的潜在关系,我们的方法不仅能够纠正错误的模型更新,而且还可以利用互补的多视图表示来增强鲁棒性 外观造型。
最后,我们建立了一个封闭的解决方案,以桥接多贝叶斯预测学习跟踪器和多视图多专家还原方案,从而可以共同提高其跟踪性能。 基准评估表明,我们的跟踪器在刻度变化和遮挡方面更强大,更准确,并且可以实现最新的跟踪性能。

Related work

展开阅读全文
©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值