23年12月,腾讯、新加坡国立大学联合发布DynVideo-E: Harnessing Dynamic NeRF for Large-Scale Motion- and View-Change Human-Centric Video Editing。
DynVideo-E框架首次引入动态NeRF作为视频表示,通过人体姿态引导将视频信息聚合到3D背景空间和3D动态人体空间中,进而能对大规模运动、视图变化和以人为中心的视频进行编辑。同时为了提高编辑后的三维动态人体空间的一致性和动画性,模型还提出了一组有效的设计和训练策略:利用二维和三维扩散先验、多视角多位姿分数蒸馏采样SDS,重建损失、文本引导局部超分辨率,以及各种人体和相机姿态配置。DynVideo-E使用HOSNeRF作为backbone模型,可以为动态场景实现360°自由视点、高保真、高时间一致的可控视频合成,在HOSNeRF和NeuMan数据集上性能明显优于 SOTA 方法。
本文借鉴了先前众多模型的工作成果,在训练和推理阶段直接拿来用,方便但是复杂。
文章介绍了DynVideo-E框架,该框架利用动态NeRF技术,实现了对大规模运动和视角变化的视频编辑。通过人体姿态引导,编辑在3D空间执行并传播至整个视频,确保一致性。模型结合二维和三维扩散先验、多视角多姿态分数蒸馏采样、重建损失等策略,提升编辑质量。在HOSNeRF和NeuMan数据集上,DynVideo-E优于SOTA方法,展示出在视频编辑领域的先进性能。
订阅专栏 解锁全文
2251

被折叠的 条评论
为什么被折叠?



