24年3月,上海AI Lab联合香港科技大学、香港大学等发布Generalized Predictive Model for Autonomous Driving。作者提出了通用的大规模自动驾驶视频预测模型GenAD,在实现过程中,进一步提出了迄今为止最大的自动驾驶场景训练数据集OpenDV-2K。
OpenDV-2K数据集具有开放领域的多样性:地理位置,地形,天气条件,安全关键场景,传感器设置,交通要素等。
- 从YouTuber获取公开驾驶视频数据,然后使用VLM(如BLIP-2)模型的语言上下文来标注、描述每个帧。
- 手工过滤带某些关键字(如Words, Watermark, Dark, Blurry)的黑帧或扭曲的过渡帧。
- 对来自YouTuber的视频构建了两种类型的文本,Ego-vehicle的驾驶命令Command和帧上下文Context,分别帮助模型理解自车动作和周边其他智能体行为。对于命令Co
研究提出了一种名为GenAD的自动驾驶通用视频预测模型,该模型基于大规模数据集OpenDV-2K,包含2059小时的驾驶视频,旨在提升模型在不同环境下的泛化能力。GenAD采用了时间推理块,能进行因果推理和处理视角变化,通过两阶段学习,从图像生成到视频预测,展示了在零样本推广、语言和动作条件预测等方面的优势。此外,还介绍了数据集的多样化收集和标注方法,以增强模型的可控性和样本质量。
订阅专栏 解锁全文
2810

被折叠的 条评论
为什么被折叠?



