自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(83)
  • 收藏
  • 关注

原创 51-22 Deformable DETR: Deformable Transformers for End-to-End Object Detection 论文精读

最近提出的DETR在展示良好性能的同时,消除了对许多手工设计的物体检测组件的需要。然而,由于Transformer注意力模块在处理图像特征映射时的局限性,它的收敛速度慢,特征空间分辨率有限。为了缓解这些问题,我们提出了可变形的DETR,其注意力模块只关注参考周围的一小部分关键采样点。可变形的DETR可以比DETR获得更好的性能(特别是在小物体上),训练次数减少10倍。在COCO基准上的大量实验证明了我们的方法的有效性。

2024-02-21 08:51:35 936

原创 51-23 BEVDet4D: Exploit Temporal Cues in Multi-camera 3D Object Detection 论文精读

单帧数据包含有限信息,这限制了现有基于视觉的多摄像头 3D 对象检测范式的性能。BEVDet4D 在BEVDet基础上添加了少量的改动,以最大限度地保持原有范式的优雅性,主要的目的是完成两帧BEV特征的融合。具体而言就是把前一帧的BEV特征根据自车的运动信息进行特征在世界坐标系中的对齐,融合时使用的是最简单的特征Concat。这里其实是把真正的特征融合推理过程留给BEV Encoder来完成。

2024-02-21 08:50:29 1139

原创 51-2 万字长文,深度解读端到端自动驾驶的挑战和前沿

自动驾驶社区见证了采用端到端算法框架的快速增长,这些方法利用原始传感器输入来生成车辆运动规划,而不是专注于检测和运动预测等单个任务。我们对250多篇论文进行了全面分析,深入研究了几个关键挑战,包括多模态、可解释性、因果混淆、稳健性和世界模型等,还讨论了大模型和视觉预训练的当前进展,以及如何将这些技术纳入端到端的自驾框架。

2024-02-19 13:00:29 3144 2

原创 51 -25 OccNet:Scene as Occupancy 场景作为占用

本文介绍了一种将物体表示为 3D Occupancy的新方法,以描述三维场景,并用于自动驾驶中检测、语义分割和规划任务。

2024-02-06 13:14:10 1847 1

原创 51-24 BEVFormer、BEVFormer v2,Occupancy占用网络灵感源泉 论文精读

BEVFormer 是一个纯视觉方案,通过空间和时间Deformable Attention,基本上奠定了当前自动驾驶纯视觉感知基本框架。

2024-02-03 08:48:57 1213

原创 51-21 LSS (Lift,Splat,Shoot) ,实现 BEV 感知的开山之作 论文精读

本文提出了一种新的端到端体系结构,该体系结构直接从任意数量的摄像机中提取给定图像数据的场景BEV表示。其核心思想是将每个图像单独“lift”为每个相机的特征视锥体,然后将所有视锥体“splat”成栅格化BEV网格。模型不仅能够学习如何表示图像,而且还能够学习如何将来自所有相机的预测融合到场景单个表示中。

2024-01-30 17:58:34 1383

原创 51-18 视频理解串讲— MViTv2:Improved Multiscale Vision transformers for Classification and Detection 论文精读

在本文中,作者研究并试图将多尺度视觉transformer(MViTv2)作为图像、视频分类和目标检测的统一架构,结合了分解的相对位置嵌入和残差池化连接,提出了一个改进的MViT版本。

2024-01-30 17:56:25 1141

原创 51-17 视频理解串讲— MViT,Multiscale Vision Transformer 论文精读

通过将多尺度、层次性特征的开创性思想与transformer模型联系起来,提出了用于视频和图像识别的多尺度视觉transformer,MViT。它是建立在stage的核心概念之上,每个stage由多个具有特定时空分辨率和通道维度的Transformer block组成,其主要思想是逐步扩展信道容量,同时从输入到输出网络池化时空分辨率。

2024-01-27 12:25:41 1768

原创 51-15 视频理解串讲—TimeSformer (Is Space-Time Attention All You Need for Video Understanding) 论文精读

Facebook AI提出了一种称为TimeSformer视频理解的新架构,这个架构完全基于transformer,不使用卷积层。它通过分别对视频的时间和空间维度应用自注意力机制,能有效地捕捉动作的时空特征。

2024-01-24 19:05:09 1855

原创 51-16 FusionAD 用于自动驾驶预测与规划任务的多模态融合论文精读

FusionAD,基于BEV的多模态、多任务、端到端自动驾驶模型,专注于自动驾驶预测和规划任务,性能超越2023 CVPR最佳论文UniAD模型。

2024-01-23 13:20:00 1458

原创 51-14 Retentive Network,RetNet 多尺度保留机制序列建模论文精读

RetNet 提出了多尺度保留机制序列建模,该机制支持三种计算范式,即并行、循环和分块循环。RetNet有更好的全局注意力建模、高效的计算效率、对遮挡的鲁棒性、支持基于注意力的图像生成、与置信度相关的门控机制和多任务学习等特点,对不同视觉任务可以共享历史注意力记忆,可以同时进行分类、分割、检测等任务。RetNet在视觉领域应该有广阔的应用前景。

2024-01-17 16:48:12 1179

原创 51-13 多模态论文串讲—BEiTv3,Image as a Foreign Language:BEiT Pretraining for All Vision and Vision-Lan论文精读

BEIT-3的核心思想是将图像建模为一种语言,这样我们就可以对图像、文本以及图像-文本对进行统一的maskmodeling。Multi-way transformer模型可以有效地完成不同的视觉和视觉语言任务,使其成为通用建模的一个有效选择。同时,本文也对多模态大模型的发展作了一个简单的总结。

2024-01-13 23:18:33 1543

原创 51-12 多模态论文串讲—BLIP (Bootstrapping Language-Image Pre-training) 论文精读

BLIP,用Capfilter生成更多更好的数据,然后给别的模型做训练用。你可以拿这个数据去训练VLMo、训练CoCA和训练BEiT3模型,去训练各种各样的多模的模型,因为它的目的,就是生成更好的数据。BLIP是一个非常通用的工具。

2024-01-13 18:49:00 1313

原创 51-11 多模态论文串讲—VLMo: Unified Vision-Language Pre-Training with Mixture-of-Modality-Experts 论文精读

VLMo 是一种多模态 Transformer 模型,即Mixture-of-Modality-Experts ,MoME,混合多模态专家。怎么理解呢?主流 VLP 模型分为两种,一种是双塔结构 (Dual Encoder),主要用来做多模态检索任务;一种是单塔结构 (Fusion Encoder),主要用来做多模态分类任务。VLMo 相当于是一个混合专家 Transformer 模型,预训练完成后,使用时既可以是双塔结构实现高效的图像文本检索,又可以是单塔结构成为分类任务。

2024-01-13 14:28:15 1399

原创 51-10 多模态论文串讲—ALBEF,Align before Fuse: Vision and Language Representation Learning with Momentum论文精读

ALBEF 将多模态对比学习的思路引入到了多模态模型之中,实现了多模态对比学习和多模态融合学习的统一;学习同时提出了动量蒸馏,在一定程度上解决了大规模多模态数据的噪声问题,可以作为现阶段多模态任务的一个新BaseLine方案。

2024-01-12 18:20:05 834 1

原创 51-8 GPT,GPT2,GPT3 论文精读

GPT系列让大家发现大模型是可以大力出奇迹的。

2024-01-11 19:59:06 1803

原创 51-5 Transformer 论文精读

编码器、解码器、多头自注意力、自回归的概念没搞清楚的话,值得认真读很多遍,甚至可以当成多模态大模型基础课程学习。

2024-01-10 13:28:43 502

原创 51-6 Vision Transformer ,ViT 论文精读

ViT取代了CNN,打通了CV和NLP之间的鸿沟,而且挖了一个更大的多模态的坑。ViT未来有可能真就是一个简洁、高效、通用的视觉骨干网络,而且可以完全不用任何标注信息。当拥有足够多的数据进行预训练的时候,ViT的表现就会超过CNN,突破transformer缺少归纳偏置的限制,可以在下游任务中获得较好的迁移效果。

2024-01-09 19:55:13 1409

原创 51-7 CLIP,Contrastive Language-Image Pre-training 论文精读

大规模数据,大规模模型CLIP,Contrastive Language-Image Pre-training是OpenAI在2021年2月发表的一篇文章,它是用文本作为监督信号来训练可迁移的视觉模型。在训练完成之后,作者将其应用在zero-shot分类任务中,同时还做了大量的实验,这些都表明CLIP在表征学习、鲁棒性、认知学习能力等方面具有很好的性能。

2024-01-08 19:58:17 533

原创 51-3 逐段精读、逐篇点评大模型论文系列—从入门到痴迷

大模型论文精读

2023-12-24 17:20:04 578

原创 51-1 多模态大模型的概念、核心技术以及评测

Foundation Models对智能体基本认知能力有巨大的推动作用,当然大模型资源消耗极大,需要进一步去解决。

2023-10-19 13:03:05 1283

原创 19-12 ACC自适应巡航控制系统测试与验证

本专题由深圳季连AIgraphX李博及团队出品,主要讲解ACC自适应巡航控制系统的开发与仿真测试。具体说来,包括ACC标准/法规分析、系统需求、系统架构、软件需求、软件架构、算法建模、验证场景分析、仿真实验搭建等内容。本节主要讲ACC系统整车测试与验证。

2023-10-09 00:11:44 2330 1

原创 19-6 ACC对执行器性能详细要求

​本专题由深圳季连AIgraphX李博及团队出品,主要讲解ACC自适应巡航控制系统的开发与仿真测试。具体说来,包括ACC标准/法规分析、系统需求、系统架构、软件需求、软件架构、算法建模、验证场景分析、仿真实验搭建等内容。本节主要讲ACC对执行器性能详细要求。

2023-10-09 00:04:34 673

原创 19-7 ACC系统架构及自动驾驶系统开发流程

​本专题由深圳季连AIgraphX李博及团队出品,主要讲解ACC自适应巡航控制系统的开发与仿真测试。具体说来,包括ACC标准/法规分析、系统需求、系统架构、软件需求、软件架构、算法建模、验证场景分析、仿真实验搭建等内容。本节主讲ACC系统架构及开发流程。​

2023-10-09 00:03:55 1190

原创 19-5 ACC 自适应巡航控制系统需求

本专题由深圳季连AIgraphX李博及团队出品,主要讲解ACC自适应巡航控制系统的开发与仿真测试。具体说来,包括ACC标准/法规分析、系统需求、系统架构、软件需求、软件架构、算法建模、验证场景分析、仿真实验搭建等内容。本节主要讲ACC系统需求。

2023-10-04 18:51:25 562

原创 19-4 ACC系统需求大纲

本专题由深圳季连AIgraphX李博及团队出品,主要讲解ACC自适应巡航控制系统的开发与仿真测试。具体说来,包括ACC标准/法规分析、系统需求、系统架构、软件需求、软件架构、算法建模、验证场景分析、仿真实验搭建等内容。本节重点讲解ACC系统需求大纲。

2023-10-04 11:21:18 473

原创 19-3 ACC 自适应巡航控制系统组成与工作原理

​本专题由深圳季连AIgraphX李博及团队出品,主要讲解ACC自适应巡航控制系统的开发与仿真测试。具体说来,包括ACC标准/法规分析、系统需求、系统架构、软件需求、软件架构、算法建模、验证场景分析、仿真实验搭建等内容。本节主要介绍ACC系统组成和工作原理。

2023-10-03 22:37:13 1822

原创 19-2 ACC GB/T 20608与ISO15622法规对比分析

本专题由深圳季连AIgraphX李博及团队出品,主要讲解ACC自适应巡航控制系统的开发与仿真测试。具体说来,包括ACC标准/法规分析、系统需求、系统架构、软件需求、软件架构、算法建模、验证场景分析、仿真实验搭建等内容。

2023-10-02 22:55:56 905

原创 11-13 AEB 之 VRU 自定义场景建模与仿真

本专题由深圳季连AIgraphX李博及团队出品,重点讲解AEB工作原理、系统/软件架构及需求、算法建模、CCRs/CCRb/CCRm 建模与仿真和VRU-AEB-B/P/M 建模与仿真。本节重点讲解AEB VRU自定义场景建模与仿真。

2023-09-30 16:32:10 816 4

原创 11-12 AEB 之 CCR 自定义场景建模与仿真

本专题由深圳季连AIgraphX李博及团队出品,重点讲解AEB工作原理、系统/软件架构及需求、算法建模、CCRs/CCRb/CCRm 建模与仿真和VRU-AEB-B/P/M 建模与仿真。本节重点讲解CCR建模与仿真定制。

2023-09-30 16:32:03 810

原创 11-11 AEB 算法建模

本专题由深圳季连李博及团队出品,重点讲解了 AEB 工作原理、系统/软件架构及需求、算法建模、CCRs/CCRb/CCRm 建模与仿真、VRU-AEB-B/P/M 建模与仿真。本节重点讲解AEB算法建模。

2023-09-29 19:15:10 1019

原创 11-10 前向碰撞预警 FCW 算法原理及系统设计

前向碰撞预警 FCW 算法原理及系统设计,本设计遵循 ISO 15623/22839-2013、GB_T 33577-2017、E-NCAP-2023 标准。

2023-07-07 23:05:57 5337

原创 11-9 AEB 产品软件功能架构详细设计

按照ASPICE规范的要求,需要聚焦系统需求、系统架构设计、软件需求及软件架构设计等4部分核心内容。本章是在11-8 AEB 产品软性需求的基础上,重点讲述产品软件功能架构详细设计。

2023-07-07 17:30:03 902

原创 11-8 AEB 产品软件需求

按照ASPICE规范的要求,需要聚焦系统需求、系统架构设计、软件需求及软件架构设计等4部分核心内容。本章是在11-7 AEB 产品系统架构的基础上,重点讲述软件需求部分。

2023-07-07 17:29:09 484

原创 11-7 AEB 产品系统架构的组成

按照ASPICE规范的要求,需要聚焦系统需求、系统架构设计、软件需求及软件架构设计等4部分核心内容。本章是在11-6 AEB 产品系统需求详细解析的基础上,重点讲述系统架构方面的内容。

2023-07-07 17:28:07 589

原创 11-6 AEB 产品系统需求详细解析

本专题旨在探讨如何利用仿真软件开发自动紧急制动系统 AEB,主要通过整理开发流程,实现从需求到验证的全流程掌握,为后续开发提供支持;同时,研究了如何在汽车自动驾驶仿真工具中开发自己的算法,并解决了从 ISO、E-CNAP、GB/T 以及交通法规等提炼出功能需求的问题,以快速实现原型模型的开发。本专题重点讲解了 AEB 的工作原理、系统/软件架构和需求、算法模型及实现、CCRs/CCRb/CCRm 建模与仿真、VRU-AEB-B/P/M 建模与仿真,同时还提供了测试用例,期待最终将 AEB 算法成功地产品化。

2023-06-13 23:58:41 1182 1

原创 11-4 AEB 算法原理及系统组成

本专题旨在探讨如何利用仿真软件开发自动紧急制动系统AEB,主要通过整理开发流程,实现从需求到验证的全流程掌握,为后续开发提供支持;同时,研究了如何在汽车自动驾驶仿真工具中开发自己的算法,并解决了从ISO、E-CNAP、GB/T以及交通法规等提炼出功能需求的问题,以快速实现原型模型的开发。本专题重点讲解了AEB的工作原理、系统/软件架构和需求、算法模型及实现、CCRs/CCRb/CCRm建模与仿真、VRU-AEB-B/P/M建模与仿真,同时还提供了测试用例,期待将AEB算法成功地产品化。

2023-06-13 21:53:47 4787

原创 11-5 当前厂商领航辅助驾驶系统 NOA 解决方案

借助介绍 AEB 系统的感知架构,本文主要讲解当前领航辅助驾驶系统 NOA 解决方案。

2023-06-13 21:53:43 741

原创 11-2 智能汽车软件开发流程详细解析

内容来源于AEB、ACC、ALC、TJA、HWA、NOA、L4 等ADS和ADAS具体项目实施过程的总结,如有疏漏或不当之处,请不吝指出。

2023-06-13 16:27:41 1965

原创 11-1 FCW/AEB 设计依赖的 E-NCAP 评测标准详细解析

E-NCAP 创始于1997年,英国交通研究实验室以及英国运输部发起,由欧洲七个政府组织组成,目前已经成为汽车界最具权威的安全认证机构。笔者认为未来可能增加的评测项目:1.更严格的碰撞测试:加入更为严格的碰撞测试,例如更高的碰撞速度和更复杂的碰撞场景等。2.电动汽车安全测试:电动汽车的电池安全是消费者购车关注的重点,E-NCAP 可能会加入更多电动汽车电池燃烧和泄漏的测试。3.虚拟场景和V2X 场景的支持,因自动驾驶的特殊情况,需要更多虚拟场景的仿真测试支持、V2X 参考场景支持。

2023-06-07 16:36:49 4563 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除