用数塔问题和斐波那契数列数列理解DP(小笔记)

本文深入解析动态规划在解决斐波那契数列和数塔问题中的应用,通过递归与递推两种方法对比,详细阐述了如何避免重复计算,提高算法效率。
摘要由CSDN通过智能技术生成

一、斐波那契数列

斐波那契数列:f(n) = f(n-1) + f(n-2),且f(0) = 1, f(1) = 1。
由递归的思想我们可以知道:递归边界:f(1) = 0 || f(1) = 0;
可得到代码:

#include<cstdio>
int F(int n){
    if(n == 0 || n == 1){
        return 1;
    }
    else{
        return F(n-1) + F(n-2);
    }
}

int main(){
    int n;
    printf("请输入n的值:");
    scanf("%d",&n);
    int value = F(n);
    printf("%d",value);
}

假设:
n = 5的时候,f(5) = f(4) + f(3), f(4) = f(3) + f(2),f(3)在被重复计算,所以当n很大的时候,会造成更多的数出现无用的重复计算。
为了解决这个问题,加入了动态规划,使用一个DP数组来记录下已经计算的,当n在DP数组中有对应的值时,直接返回这个值,无需再次计算,效率就提高了很多。

代码如下(DP递归写法):

#include<cstdio>
#include<iostream>
using namespace std;
int DP[10010];

int F(int n){
    if(n == 0 || n == 1){
        return 1;
    }
    if(DP[n] != -1){
        return DP[n];
    }
    else{
        DP[n] = F(n-1) + F(n-2);
        return DP[n];
    }
}

int main(){
    for(int i = 0; i < sizeof(DP) / sizeof(DP[0]); i++){
        DP[i] = -1;
    }
    int n;
    printf("请输入n:");
    scanf("%d",&n);
    int value = F(n);
    printf("%d",value);
}

二、数塔问题

数塔问题不做叙述,其他博主讲的太多了直接放代码。

代码如下(为经DP处理的代码):

#include<cstdio>
#include<iostream>
using namespace std;
int shuta[200][200];
int n;

int max(int x, int y){
    if(x > y){
        return x;
    }
    else{
        return y;
    }
}

int DFSshuta(int i, int j){
    if(i == n){
        return shuta[i][j];
    }
    int x = DFSshuta(i+1, j);
    int y = DFSshuta(i+1, j+1);
    return  max(x, y) + shuta[i][j];
}

int main(){
    printf("输入你有几层树塔:");
    scanf("%d",&n);
    for(int i = 1;i <= n; i++){
        for(int j = 1; j <= i; j++){
            cin>>shuta[i][j];
        }
    }
    
    for(int i=0;i<=n;i++){    //用来遍历已经输入的数据
        for(int j=1;j<=i;j++){
            printf("%d ",shuta[i][j]);
            if(j==i){
                printf("\n");
            }
        }
    }
    printf("%d",DFSshuta(1, 1));
}

代码如下(DP递推写法):

#include<cstdio>
#include<iostream>
using namespace std;

int DP[200][200];
int n;
int shuta[200][200];

int max(int x, int y){
    if(x > y){
        return x;
    }
    else{
        return y;
    }
}

int main(){
    printf("数塔层数:");
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        for(int j=1;j<=i;j++){
            cin>>shuta[i][j];
        }
    }

    for(int j=1;j<=n;j++){
        DP[n][j] = shuta[n][j];
    }

    for(int i=n-1;i>=1;i--){
        for(int j=1;j<=i;j++){
            DP[i][j] = max(DP[i+1][j],DP[i+1][j+1]) + shuta[i][j];
        }
    }

    printf("%d",DP[1][1]);
}

三、练习

1.上述的问题中,斐波那契数列使用DP的递归写法,数塔问题用DP递推写法,在这里对这两个问题分别用递推和递归写法再次练习。
代码如下(斐波那契DP递推及其简洁):
1.斐波那契

#include<cstdio>
#include<iostream>
using namespace std;
int DP[10010];
int n;
int main(){
    DP[0] = 1;
    DP[1] = 1;
    cout<<"输入n:";
    scanf("%d",&n);
    for(int i=2;i<=n;i++){
        DP[i] = DP[i-1] + DP[i-2];
    }
    printf("%d",DP[n]);
}

2.数塔:

#include<cstdio>
#include<iostream>
using namespace std;
int shuta[200][200];
int DP[200][200];
int n;

int max(int x, int y){
    if(x > y){
        return x;
    }
    else{
        return y;
    }
}

int DFSshuta(int i, int j){
    if(i == n){
        return DP[i][j];
    }
    if(DP[i][j] != -1){
        return DP[i][j];
    }
    else{
        int x = DFSshuta(i+1, j);
        int y = DFSshuta(i+1, j+1);
        DP[i][j] = max(x, y) + shuta[i][j];
        return DP[i][j];
    }

}

int main(){
    cout<<"输入数塔的层数:";
    cin>>n;
    for(int i=1;i<=n;i++){
        for(int j=1;j<=i;j++){
            cin>>shuta[i][j];
            DP[i][j] = -1;
        }
    }
    for(int j=1;j<=n;j++){
        DP[n][j] = shuta[n][j];
    }
    for(int i=1;i<=n;i++){
        for(int j=1;j<=i;j++){
            printf("%d ",shuta[i][j]);
            if(j == i){
                printf("\n");
            }
        }
    }
    cout<<DFSshuta(1,1);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值