一、斐波那契数列
斐波那契数列:f(n) = f(n-1) + f(n-2),且f(0) = 1, f(1) = 1。
由递归的思想我们可以知道:递归边界:f(1) = 0 || f(1) = 0;
可得到代码:
#include<cstdio>
int F(int n){
if(n == 0 || n == 1){
return 1;
}
else{
return F(n-1) + F(n-2);
}
}
int main(){
int n;
printf("请输入n的值:");
scanf("%d",&n);
int value = F(n);
printf("%d",value);
}
假设:
n = 5的时候,f(5) = f(4) + f(3), f(4) = f(3) + f(2),f(3)在被重复计算,所以当n很大的时候,会造成更多的数出现无用的重复计算。
为了解决这个问题,加入了动态规划,使用一个DP数组来记录下已经计算的,当n在DP数组中有对应的值时,直接返回这个值,无需再次计算,效率就提高了很多。
代码如下(DP递归写法):
#include<cstdio>
#include<iostream>
using namespace std;
int DP[10010];
int F(int n){
if(n == 0 || n == 1){
return 1;
}
if(DP[n] != -1){
return DP[n];
}
else{
DP[n] = F(n-1) + F(n-2);
return DP[n];
}
}
int main(){
for(int i = 0; i < sizeof(DP) / sizeof(DP[0]); i++){
DP[i] = -1;
}
int n;
printf("请输入n:");
scanf("%d",&n);
int value = F(n);
printf("%d",value);
}
二、数塔问题
数塔问题不做叙述,其他博主讲的太多了直接放代码。
代码如下(为经DP处理的代码):
#include<cstdio>
#include<iostream>
using namespace std;
int shuta[200][200];
int n;
int max(int x, int y){
if(x > y){
return x;
}
else{
return y;
}
}
int DFSshuta(int i, int j){
if(i == n){
return shuta[i][j];
}
int x = DFSshuta(i+1, j);
int y = DFSshuta(i+1, j+1);
return max(x, y) + shuta[i][j];
}
int main(){
printf("输入你有几层树塔:");
scanf("%d",&n);
for(int i = 1;i <= n; i++){
for(int j = 1; j <= i; j++){
cin>>shuta[i][j];
}
}
for(int i=0;i<=n;i++){ //用来遍历已经输入的数据
for(int j=1;j<=i;j++){
printf("%d ",shuta[i][j]);
if(j==i){
printf("\n");
}
}
}
printf("%d",DFSshuta(1, 1));
}
代码如下(DP递推写法):
#include<cstdio>
#include<iostream>
using namespace std;
int DP[200][200];
int n;
int shuta[200][200];
int max(int x, int y){
if(x > y){
return x;
}
else{
return y;
}
}
int main(){
printf("数塔层数:");
scanf("%d",&n);
for(int i=1;i<=n;i++){
for(int j=1;j<=i;j++){
cin>>shuta[i][j];
}
}
for(int j=1;j<=n;j++){
DP[n][j] = shuta[n][j];
}
for(int i=n-1;i>=1;i--){
for(int j=1;j<=i;j++){
DP[i][j] = max(DP[i+1][j],DP[i+1][j+1]) + shuta[i][j];
}
}
printf("%d",DP[1][1]);
}
三、练习
1.上述的问题中,斐波那契数列使用DP的递归写法,数塔问题用DP递推写法,在这里对这两个问题分别用递推和递归写法再次练习。
代码如下(斐波那契DP递推及其简洁):
1.斐波那契
#include<cstdio>
#include<iostream>
using namespace std;
int DP[10010];
int n;
int main(){
DP[0] = 1;
DP[1] = 1;
cout<<"输入n:";
scanf("%d",&n);
for(int i=2;i<=n;i++){
DP[i] = DP[i-1] + DP[i-2];
}
printf("%d",DP[n]);
}
2.数塔:
#include<cstdio>
#include<iostream>
using namespace std;
int shuta[200][200];
int DP[200][200];
int n;
int max(int x, int y){
if(x > y){
return x;
}
else{
return y;
}
}
int DFSshuta(int i, int j){
if(i == n){
return DP[i][j];
}
if(DP[i][j] != -1){
return DP[i][j];
}
else{
int x = DFSshuta(i+1, j);
int y = DFSshuta(i+1, j+1);
DP[i][j] = max(x, y) + shuta[i][j];
return DP[i][j];
}
}
int main(){
cout<<"输入数塔的层数:";
cin>>n;
for(int i=1;i<=n;i++){
for(int j=1;j<=i;j++){
cin>>shuta[i][j];
DP[i][j] = -1;
}
}
for(int j=1;j<=n;j++){
DP[n][j] = shuta[n][j];
}
for(int i=1;i<=n;i++){
for(int j=1;j<=i;j++){
printf("%d ",shuta[i][j]);
if(j == i){
printf("\n");
}
}
}
cout<<DFSshuta(1,1);
}
本文深入解析动态规划在解决斐波那契数列和数塔问题中的应用,通过递归与递推两种方法对比,详细阐述了如何避免重复计算,提高算法效率。

804

被折叠的 条评论
为什么被折叠?



