word2vec两种改进方法:层次softmax、负采样

word2vec模型中,为解决softmax层计算量大的问题,提出了层次softmax和负采样两种优化方法。层次softmax利用霍夫曼树减少计算复杂度,但对生僻词处理较慢;负采样则通过随机采样构造负样本,简化模型训练,且比层次softmax更高效。负采样时,依据词频确定采样概率,构建虚拟负样本进行训练。
摘要由CSDN通过智能技术生成

word2vec两种改进方法

在进行最优化的求解过程中:从隐藏层到输出的Softmax层的计算量很大,因为要计算所有词的Softmax概率,再去找概率最大的值,可以使用层次softmax负采样两种方法解决

层次softmax

对输出层进行优化的策略,输出层从原始模型利用softmax计算概率值改为利用Huffman树计算概率值
使用霍夫曼树的好处:
首先,由于是二叉树,之前计算量为V,现在变成了logV;
第二,由于使用霍夫曼树是高频的词靠近树根,这样高频词需要更少的时间会被找到,这符合我们的贪心优化思想

层次softmax缺点

使用霍夫曼树来代替传统的神经网络,可以提高模型训练的效率。但是如果我们的训练样本里的中心词w是一个很生僻的词,那么就得在霍夫曼树中辛苦的向下走很久了。能不能不用搞这么复杂的一颗霍夫曼树,将模型变的更加简单呢?

负采样

把语料中的一个词串的中心词替换为别的词,构造语料D中不存在的词串作为负样本,每次训练只更新部分隐藏权重矩阵。
比如我们有一个训练样本,中心词是w,它周围上下文共有2c个词,记为context(w)。由于这个中心词w和context(w)相关存在,因此它是一个真实的正例。通过Negative Sampling采样,我们得到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>